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Abstract—In distributed sensor networks, sensors often ob-
serve a dynamic process within overlapping regions. Due to
random delays, these correlated observations arrive at the fusion
center asynchronously, raising a central question: How can one
fuse asynchronous yet correlated information for accurate remote
fusion estimation? This paper addresses this challenge by studying
the joint design of sampling, scheduling, and estimation policies
for monitoring a correlated Wiener process. Though this problem
is coupled, we establish a separation principle and identify the
joint optimal policy: the optimal fusion estimator is a weighted-
sum fusion estimator conditioned on Age of Information (AoI),
the optimal scheduler is a Maximum Age First (MAF) scheduler
that prioritizes the most stale source, and the optimal sampling
can be designed given the optimal estimator and the MAF
scheduler. To design the optimal sampling, we show that, under
the infinite-horizon average-cost criterion, optimizing AoI is
equivalent to optimizing MSE under pull-based communications,
despite the presence of strong inter-sensor correlations. This
structural equivalence allows us to identify the MSE-optimal
sampler as one that is AoI-optimal. This result underscores an
insight: information freshness can serve as a design surrogate for
optimal estimation in correlated sensing environments.

Index Terms—Age of Information, Markov Decision Process,
Information Fusion, Remote Estimation

I. INTRODUCTION

A. Motivation
Minimizing Age of Information (AoI) has been a central

objective in status update systems, driven by the intuitive
notion that fresher data is more valuable [1]. However, the
precise impact of AoI on application-layer performance is not
yet fully understood. In single-source settings, prior studies
have shown that for tasks such as timely estimation [2]–[6]
and inference [7]–[10], expected task performance can be
analytically expressed using AoI under pull-based communi-
cation. For instance, when observing a Wiener process, the
expected mean-square error (MSE) given a message equals its
AoI [2]; for Ornstein-Uhlenbeck (OU) processes, the expected
MSE is a monotonic function of AoI [3]. More generally,
[7] demonstrates that inference performance may degrade
according to a penalty function that is both non-linear and non-
monotonic in AoI. These results imply that minimizing AoI
or its potentially non-linear penalty can improve the system’s
estimation/reference performance.
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Fig. 1. System Model.

However, in multi-source systems where multiple informa-
tion streams share a common communication channel, the
situation becomes considerably more intricate. New challenges
arise. First, even simply minimizing the sum of AoI across
sources becomes nontrivial, requiring the joint design of
sampling and scheduling policies under a shared channel [11].
Second, the insight into the relationship between AoI and task
performance observed in single-source settings does not neces-
sarily hold for multi-source networks. Different sources may
have varying importance, dynamics, or update requirements
[12], [13], making it unclear whether minimizing AoI across
all sources leads to meaningful application-level gains. Third,
and more fundamentally, updates from distributed sensors are
often correlated in practice, e.g., temperature and humidity in
environmental monitoring, or video and audio in multimedia
systems. In such cases, updates from one source may implicitly
convey partial information about others. Consequently, the
value of an update is determined not solely by its individual
freshness, but by its task-relevant marginal contribution to a
certain reference goal [14], [15].

B. Related Work
To address the inter-source correlations in multi-source sta-

tus update systems, a heuristic metric named Age of Correlated
Information (AoCI) was proposed in [16]. Under this model,
the AoCI resets only when all relevant correlated updates
are successfully received. This metric has been well-studied
in various sensor network settings [17]–[19]. However, AoCI
overlooks the differential contribution of each source to the
final task and imposes an ideal “all-or-nothing” assumption
that penalizes the system until all relevant updates are re-
ceived—even when partial observations are already sufficient
to capture the key characteristics of the system.

To address these limitations, some recent works [20]–[22]
propose probabilistic frameworks where the delivery of an
update from source i reduces the AoI of source j with prob-



ability pij . In [23], correlated IoT devices are grouped such
that an update from one sensor implies concurrent updates in
the same group. Additionally, [24] introduces an attenuation
factor αn(t) to model inter-source correlation, enabling partial
AoI reduction based on the statistical overlap between sources.

While the aforementioned models capture information over-
lap caused by inter-source correlation, they often treat fresh-
ness as an abstract metric, largely decoupled from the system’s
estimation and other inference objectives. Consequently, al-
though heuristic age metrics and AoI dynamics are introduced,
their direct impact on application-layer estimation accuracy
remains insufficiently explored.

A notable exception that explicitly links information fresh-
ness with estimation accuracy for correlated sources is the
recent work by Ramakanth et al. [25], which addresses joint
scheduling and estimation for monitoring a correlated Wiener
process. Their framework, built on a time-slotted system with
idealized, zero-delay communication channel, offers important
insights into how information freshness can help improve the
estimation error of correlated sources. However, real-world
networks are characterized by unavoidable random delays, due
to factors like buffer overflow, link-layer retransmissions, and
routing variability—especially in dynamic environments such
as Non-Terrestrial Networks (NTNs). Yet, in scenarios with
random transmission delays [26]–[28], this sampling decision
becomes far from trivial: the zero-wait sampling, while simple,
can severely degrade estimation performance.

C. Contributions of This Work

• System Model: We investigate the joint design of sam-
pling, scheduling, and estimation policies for correlated
Wiener processes in the presence of random delays.
Unlike the time-slotted model in [25], which considers
ideal immediate delivery and focuses only on scheduling,
our continuous-time framework incorporates stochastic
delays typical in real-world networks. Moreover, we in-
clude sampling decisions as part of the design, which de-
termines when each sensor should generate and transmit
updates. This is motivated by recent findings showing that
non-zero-waiting policies can outperform zero-waiting
policies under random delay [26]–[28].

• Separation-Structured Optimal Design: We establish
a separation principle for the joint design of sampling,
scheduling, and estimation in correlated sensing. This
principle enables a modular decomposition of the prob-
lem, leading to a structured policy that achieves optimal
long-term average MSE in estimation and scheduling,
and near-optimal performance in sampling. The joint
policy comprises: (i) a weighted-sum fusion estimator;
(ii) a Maximum Age First (MAF) scheduler; and (iii) a
threshold-triggered Water-Filling (WF) sampler.

• Methodology Design: Solving the joint optimization
problem poses a key technical challenge, as the state
space of the formulated infinite-horizon MDP is both
transient and unbounded, rendering classical average-cost
approaches such as the Average Cost Optimality Equation

(ACOE) and Relative Value Iteration (RVI) inapplicable.
Existing remedies, including discounting and state trun-
cation [29], [30], often introduce bias or compromise
optimality. In contrast, we construct a new MDP with
bounded and recurrent dynamics. We prove that the
transformed MDP is equivalent to the original MDP in
terms of average-cost performance. This reduction allows
us to shift the analysis from an intractable MDP to a well-
behaved MDP, thereby enabling efficient optimization
while preserving theoretical optimality.

• Theoretical Insight: We reveal that the transformed well-
behaved MDP is mathematically equivalent to a classi-
cal long-term average sum-AoI minimization problem.
This equivalence implies that, under the infinite-horizon
average-cost criterion, an AoI-optimal sampling policy
for multiple sources [11] also minimizes the MSE, even
in the presence of strong inter-source correlations.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a system where spatially distributed sensors
monitor a dynamic physical process (e.g., temperature or
pressure), with correlated observations due to overlapping
sensing regions. Sensor samples are transmitted over a shared
random-delay channel to a remote estimator, which fuses the
collected information and reconstructs the underlying process
in real-time. The system model is shown in Fig. 1.

A. Coupled Correlated Sources

The monitored dynamic source is modeled as a corre-
lated bivariate Wiener process Wt = (W

(1)
t ,W

(2)
t )⊤, con-

structed from two independent standard Wiener processes B(1)
t

and B
(2)
t , defined on a common filtered probability space

(Ω,F , {Ft}t≥0,P). Specifically, the dynamics are given by:

dW
(1)
t = dB

(1)
t ,

dW
(2)
t = ρ dB

(1)
t +

√
1− ρ2 dB

(2)
t ,

(1)

where ρ ∈ [0, 1] quantifies the correlation due to distributed
sensors’ spatial deployment or sensing modalities.

B. Multi-source Network Model

Consider two distributed sensors where the sensor m ∈
{1, 2} monitors W (m)

t . Let Si denote the sampling time of
the i-th sample, and let ai ∈ {1, 2} indicate the scheduled
sensor corresponding to that sample. Each sample W

(ai)
Si

is
encapsulated into a packet (Si,W

(ai)
Si

) and transmitted to
a remote data center for remote information fusion estima-
tion. Each packet experiences a random transmission delay
Yi ∈ Y due to factors such as network handover, congestion,
packet size variability, and retransmissions. The delay support
Y ⊂ R+ is assumed to be finite and bounded. We adopt
a non-preemptive scheduling policy: a new sample cannot
be generated while the communication channel is occupied
by an ongoing transmission. Let Di = Si + Yi denote the
delivery time of the i-th sample. To enhance remote estimation
performance, the sampler is allowed to insert a deliberate



waiting time Zi ∈ Z before generating the next sample1,
where Si+1 = Di +Zi. The waiting time set Z ⊂ R+ is also
assumed to be finite and bounded. Without loss of generality,
we assume D0 = 0 and S0 = 0.

At any time t, the most recently delivered sample from
source m is generated at time:

Um(t) = max{Si : ai = m,Di ≤ t}, ∀m ∈ {1, 2}. (2)

Accordingly, the AoI of source m at time t is defined as:

∆m(t) ≜ t− Um(t),∀m ∈ {1, 2}. (3)

C. Sampling, Scheduling, and Estimating Policies

We consider a pull-based communication framework in
which all decisions, including sampling, scheduling, and
fusion-based estimation, are made by the information fusion
center. These decisions are made causally, relying on past sam-
pling and scheduling actions, as well as previously received
sample updates. At any time t ∈ R+, the information available
for making such causal decisions(history) is given by:

It =
{(
ai, Si,W

(ai)
Si

, Di

) ∣∣∣Di ≤ t
}
. (4)

Here, ai ∈ {1, 2} indicates the source index, Si is the sampling
time, Di is the delivery time, and W (ai)

Si
is the corresponding

sample value.
A causal policy at the fusion center includes the following

components:

• Estimator g: This function determines the real-time
estimate Ŵt based on the history It:

Ŵt = (Ŵ
(1)
t , Ŵ

(2)
t )⊤ = g(It), ∀t ∈ R+. (5)

• Scheduler π: A scheduler is a policy function that
determines which source is selected for transmission. The
selected source during the i-th transmission is based on
the history IDi−1

:

ai = π(IDi−1
), ∀i ∈ N. (6)

This policy leads to a scheduling order (a1, a2, · · · ).
• Sampler f : A sampler is a function that determines when

each sensor is sampled. The sampling time of the i-th
packet is determined based on the history IDi−1 :

Si = f(IDi−1), ∀i ∈ N. (7)

Equivalently, the sampler can be defined via the waiting
time after the previous delivery, where Zi = Si −Di−1

and Zi ∈ Z , leading to the sequence (Z1, Z2, . . . ).

D. Problem Formulation

We aim to design sampling, scheduling, and estimation
policies that jointly minimize the long-term average MSE.
For any admissible policy triple (g, π, f), the performance is

1As discussed in [2], sampling immediately upon delivery (i.e., zero-wait
sampling), although throughput-optimal, is suboptimal for remote estimation.

evaluated via the long-term average MSE:

MSE(g, π, f) ≜ lim sup
T→∞

1

T
Eg,π,f

[∫ T

0

∥∥∥Wt − Ŵt

∥∥∥2
2
dt

]
,

(8)
where Wt ∈ R2 is the source process and Ŵt ∈ R2 is its
remote fusion estimate. In this work, we focus on the following
optimization problem:

Problem 1. Find a policy triple (g, π, f) that minimizes the
long-term average MSE:

φ⋆ ≜ inf
g,π,f

MSE(g, π, f), (9)

where φ⋆ denotes the optimal long-term average MSE.

III. OPTIMAL ESTIMATING, SAMPLING, AND SCHEDULING

A. Separation Principle and Optimal Estimator
Under a given scheduling policy π and a sampling policy

f , the minimum mean-square error (MMSE) estimator [31,
IV.B.8], which minimizes the instantaneous mean-square error
in the system, is the conditional expectation of each source
process given the available history:

Ŵ
(1)
t = E

[
W

(1)
t | It

]
, Ŵ

(2)
t = E

[
W

(2)
t | It

]
. (10)

The following theorem provides an explicit characterization of
the MMSE estimator.

Theorem 1 (MMSE Fusion Estimator for Correlated Wiener
Processes). Let ρ ∈ [0, 1] denote the correlation coefficient
between W

(1)
t and W

(2)
t . Let ∆m(t) denote the AoI of

source m. Given any scheduling policy π and sampling policy
f , the MMSE estimate of W (1)

t is:

Ŵ
(1)
t =


W

(1)
t−∆1(t)

, ∆1(t) ≤ ∆2(t)

Gt,ρ(∆1(t),∆2(t)) ·W (1)
t−∆1(t)

+

Qt,ρ(∆1(t),∆2(t)) ·W (2)
t−∆2(t)

, ∆1(t) > ∆2(t)

(11)
The MMSE estimation of W (2)

t is:

Ŵ
(2)
t =


W

(2)
t−∆2(t)

, ∆2(t) ≤ ∆1(t)

Gt,ρ(∆2(t),∆1(t)) ·W (2)
t−∆2(t)

+

Qt,ρ(∆2(t),∆1(t)) ·W (1)
t−∆1(t)

, ∆2(t) > ∆1(t)

(12)
where the functions Gt,ρ(x, y) and Qt,ρ(x, y) are defined by:

Gt,ρ(x, y) ≜
(1− ρ2)(t− y)

t− y − ρ2(t− x)
, Qt,ρ(x, y) ≜

ρ(x− y)

t− y − ρ2(t− x)
,

(13)
and we refer to them as fusion weights.

Proof. See Appendix A. ■

The results above reveal how the remote data fusion center
exploits asynchronous and potentially stale information from
distributed sensors to perform real-time estimation of corre-
lated sources. Specifically, the MMSE estimator for W (m)

t

depends on the relative freshness (i.e., AoI) of the most



recently received samples from both sources. If the latest
sample from source m is fresher than the other source m′,
i.e., ∆m(t) ≤ ∆m′(t), then the MMSE estimate of W (m)

t is
simply the value of its most recently received sample:

Ŵ
(m)
t =W

(m)
t−∆m(t). (14)

This corresponds to the intuitive case in which fresher infor-
mation dominates. However, if the sample from the source m′

is fresher, i.e., ∆m(t) > ∆m′(t), then the MMSE estimate
of W (m)

t must fuse both the staler sample W (m)
t−∆m(t) and the

fresher correlated sample W (m′)
t−∆m′ (t)

. These two components
are weighted by coefficients that depend on the correlation ρ,
the AoIs ∆1(t) and ∆2(t), and the current time t. Moreover,
by choosing specific values of ρ, our results recover known
estimation structures studied in the existing literature.

• If ρ = 1, the fusion coefficients simplify to Gt,1(x, y) ≡
0 and Qt,1(x, y) ≡ 1. Substituting these into the MMSE
estimator (Theorem 1) leads to the degenerate result:

Ŵ
(1)
t = Ŵ

(2)
t =

{
W

(1)
t−∆1(t)

, if ∆1(t) ≤ ∆2(t)

W
(2)
t−∆2(t)

, if ∆1(t) > ∆2(t).
(15)

Note that W (1)
t = W

(2)
t when ρ = 1; in this case,

the problem reduces to the classical single-source remote
estimation scenario, as studied in [2].

• If ρ = 0, the fusion weights reduce to Gt,0(x, y) ≡ 1
and Qt,0(x, y) ≡ 0. Substituting these into the MMSE
estimator yields:

Ŵ
(m)
t =W

(m)
t−∆m(t), ∀m. (16)

This corresponds to the classical setting for remote esti-
mation of independent sources, where each source can be
estimated independently, as discussed in [12] and [13].

B. Maximum Age First Scheduling is All You Need
In pull-based communication systems, the receiver pulls

updates based on its own information requirements. Given the
available information history It, the expected MSE at time t
is given by:

ϵ(t) ≜ E
[
∥Wt − gMMSE(It)∥22

∣∣ It] = ∆1(t) + ∆2(t)

− ρ2 (∆1(t)−∆2(t))
2

(1− ρ2)t+ ρ2 max{∆1(t),∆2(t)} −min{∆1(t),∆2(t)}
.

(17)
This result reveals a significant insight: the estimation error
depends not only on the individual values of ∆1(t) and ∆2(t),
but also their interaction adjusted by ρ. When ρ = 0, the
sources are independent, and the estimation error simplifies
neatly to the sum of AoI values:

ϵ(t) = ∆1(t) + ∆2(t), (18)

a form that aligns with prior results in uncorrelated multi-
source settings, e.g., [12] and [13]. Consequently, optimizing
update scheduling in this setting is equivalent to minimizing
the sum of AoI [11].

In this work, we deliberately focus on the more complex

and practical regime in which the correlation between sources
is strictly positive (ρ > 0). Let Si,m = max{Sk : ak =
m, Sk < Di} denote the most recent sampling time from
source m prior to the i-th update interval. Since only one
source is sampled per interval, the AoI for source m evolves
linearly during [Di, Di+1) as:

∆m(t) = t− Si,m, for t ∈ [Di, Di+1). (19)

Substituting (19) into (17), the instantaneous estimation error
ϵ(t) can be expressed explicitly as a function of Si,1 and Si,2:

ϵ(t) = (t− Si,1) + (t− Si,2)−
ρ2(Si,1 − Si,2)

2

max{Si,1, Si,2} − ρ2 min{Si,1, Si,2}
, ∀t ∈ [Di, Di+1).

(20)
The next step is to evaluate the cumulative estimation error
accumulated over each update interval [Di, Di+1). Let the
length of each update interval be Di+1 − Di = Yi+1 + Zi.
Let µY = E[Y ] and σY = E[Y 2] denote the first and second
moments of the delay distribution. Then, the the expected
accumulated MSE within the interval [Di, Di+1) takes the
following form:

E

[∫ Di+Yi+1+Zi

Di

ϵ(t)dt

∣∣∣∣∣ IDi

]
= σY + µY Zi + (Zi + µY ) (2Yi + Zi + qρ (Si,1, Si,2)) .

(21)
Here, the function qρ(x, y) is defined as:

qρ(x, y) = |x− y| ×
(
1− ρ2|x− y|

max{x, y} − ρ2 min{x, y}

)
.

(22)
For notational simplicity, let Cρ(Si,1, Si,2, Yi, Zi) denote the
right-hand side of (21), representing the total expected cost
incurred during the i-th interval. Building on this definition,
the long-term average MSE minimization problem can be
reformulated as minimizing the long-term time-average of per-
interval expected costs:

min
π,f

lim
T→∞

1

T
E

[∫ T

0

∥∥∥Wt − Ŵt

∥∥∥2
2
dt

]

= min
π,f

lim
n→∞

∑n−1
i=0 E

[
E
[∫Di+1

Di
ϵ(t)dt

∣∣∣ IDi

]]
E[Dn]

= min
π,f

lim
n→∞

1
n

∑n−1
i=0 E [Cρ(Si,1, Si,2, Yi, Zi)]
1
n

∑n−1
i=0 E[Yi+1 + Zi]

. (23)

To address this fractional optimization, we adopt the classical
Dinkelbach method [32]. For any λ ≥ 0, , we define the
following parameterized auxiliary problem:

Problem 2 (Average–cost reformulation via Dinkelbach).

Θ(λ) = min
π,f

lim
n→∞

1

n

n−1∑
i=0

E
[
Cρ
(
Si,1, Si,2, Yi, Zi

)
− λ

(
Yi+1 + Zi

)]
.

(24)

The following lemma establishes the equivalence between



the fractional problem (23) and its reformulation (24).

Lemma 1 (Equivalence via Dinkelbach). Let φ⋆ denote the
optimal value of the fractional problem in (23). Then the
following assertions hold:

1) φ⋆ ⋛ λ if and only if Θ(λ) ⋛ 0.
2) When Θ(λ) = 0, then any policy that minimizes (24)

also solves the original fractional problem (23).

Proof. The proof follows standard arguments in fractional
programming and is omitted here due to page constraints. ■

Problem 2 admits a natural infinite–horizon average–cost
MDP formulation:

MDP 1 (Original Infinite-Horizon MDP). This MDP can be
specified by the following components:

• State: xi ≜
(
Si,1, Si,2, Yi

)
∈ R3

+.
• Action: ui ≜ (ai, Zi) with scheduling action ai ∈ {1, 2}

and waiting time Zi ∈ R+.
• One–step cost:

cρλ(xi, ui) ≜ Cρ
(
Si,1, Si,2, Yi, Zi

)
− λ

(
E[Yi+1] + Zi

)
= σY + µY Zi − λµY − λZi

+ (Zi + µY ) (2Yi + Zi + qρ (Si,1, Si,2)) .
(25)

which coincides with the right–hand side of (24).
• State transition: Conditioned on (xi, ui), for any source

index m, the sampling time evolves as:

Si+1,m =

{
max{Si,1, Si,2}+ Yi + Zi, if ai = m,

Si,m, otherwise,
(26)

while Yi+1 is drawn i.i.d. from the prescribed delay
distribution and is independent of Yi.

However, in the MDP above, the state xi may be transient
and unbounded, with the sampling times Si,1, Si,2 growing
without bound. As a result, standard dynamic programming
tools for average-cost problems, such as the ACOE [33,
Eq. 4.1] and its solution via RVI [34] become inapplicable.
To address this technical challenge, we propose a two-stage
MDP transformation. We first introduce the following auxiliary
variables:

Γi = |Si,1 − Si,2|, Mi = max{Si,1, Si,2}, ∀i (27)

where Γi denotes the age gap between the two sources and Mi

captures their common upper envelope. We redefine the state
of the system as the pair (Γi,Mi). Based on this state space
transformation, we construct the following equivalent MDP:

MDP 2 (State Space Transformation). This MDP is defined
by the following components:

• State: xi ≜
(
Γi,Mi, Yi

)
∈ R3

+.
• Action: ui ≜ (ai, Zi) ∈ {1, 2} × R+.
• One–step cost:

cρλ(xi, ui) = σY + µY Zi − λµY − λZi

+ (Zi + µY ) (2Yi + Zi +Hρ (Γi,Mi)) ,
(28)

where Hρ(Γi,Mi) = qρ(Si,1, Si,2), with

Hρ(Γi,Mi) = Γi

(
1− ρ2Γi

Γi + (1− ρ2)Mi

)
. (29)

• State transition: Mi evolves as:

Mi+1 =Mi + Yi + Zi. (30)

Γi evolves as:

Γi+1 =

{
Γi + Yi + Zi, if ai = argmaxm{Si,m},

Yi + Zi, if ai = argminm{Si,m},
(31)

With this MDP, although Mi may still grow unbounded
over time, Γi can be bounded under a suitable policy. This
motivates us to examine a structural property of the one-step
cost function, captured in the following lemma.

Lemma 2 (Monotonicity in the age gap Γ). The function
Hρ(M,Γ) as well as the one–step cost cρλ(Γ,M, Y, u) in (28)
are strictly increasing in Γ.

Proof. For every fixed envelope level M we have

∂Hρ(M,Γ)

∂Γ
= 1− ρ2Γ(Γ + 2(1− ρ2)M)

(Γ + (1− ρ2)M)2
> 1− ρ2 > 0,

(32)
Hence, Hρ(M,Γ) is strictly increasing in Γ. It follows imme-
diately that cρλ(Γ,M, Y, u) is also increasing with Γ. ■

Leveraging the monotonicity property in Lemma 2, we
now show that the MAF scheduling policy is optimal for the
transformed MDP 2.

Theorem 2 (Separation principle and optimality of MAF
scheduling). For every λ ≥ 0 and any given sampling policy f ,
the stationary policy that always schedules the sensor with the
maximum age,

aMAF
i = argmax

m∈{1,2}
∆m(Di), ∀i ∈ N, (33)

is optimal for the average–cost MDP defined by (28)–(31).

Proof. Fix an arbitrary epoch index ℓ. Construct two parallel
action sequences: u = ((a1, Z1), . . . , (aℓ, Zℓ), . . . ),u

′ =
((a′1, Z

′
1), . . . , (a

′
ℓ, Z

′
ℓ), . . . ). Here Z ′

k = Zk, for ∀k. The
scheduling action aℓ is:

aℓ = argmin
m∈{1,2}

∆m(Dℓ), (34)

while the action a′k only differs ak at the epoch ℓ2:

a′k =

{
ak if k ̸= ℓ,

argmaxm ∆m(Dℓ) if k = ℓ,
(35)

Let the exogenous random delay {Yk}k≥1 be the same
for both systems. Denote the resulting state trajectories by
{Γk,Mk}k≥1 and {Γ′

k,M
′
k}k≥1, respectively. Because Mk

2As ∆m(Dℓ) = Dℓ − Sℓ,m, minimizing(maximizing) ∆m(Dℓ) is
equivalent to maximizing(minimizing) Sℓ,m.



evolves regardless of which sensor is scheduled, and the two
sequences share the same {Yk, Zk}, from (30) we have

Mk =M ′
k, ∀k ∈ N. (36)

Then, we apply induction in Appendix B to establish:

Γ′
k ≤ Γk, ∀k ∈ N. (37)

Given the strict monotonicity of the cost function
cρλ(Γ,M, Y, u) in Γ (2), it immediately follows that:

cρλ(Γ
′
k,M

′
k, Yk, (a

′
k, Z

′
k)) ≤ cρλ(Γk,Mk, Yk, (ak, Zk)), ∀k.

(38)
Consequently, deviating from the MAF policy at any epoch
results in a higher total cost, confirming that consistently
scheduling the sensor with the maximum age is optimal. ■

Theorem 2 reveals a key simplification: scheduling and
sampling can be decoupled, with the optimal scheduling
given by the intuitive MAF rule. Consequently, joint policy
optimization reduces to designing the sampling policy under
fixed gMMSE and πMAF, as addressed in the next subsection.

C. Optimal Sampling Policy
Given the MAF scheduling, the age gap dynamics in (31)

becomes recurrent: Γi+1 = Yi + Zi. However, the state Mi

remains transient and unbounded. To address this, we here
eliminate the tricky state Mi and formulate a new MDP:

MDP 3 (Mi State Elimination Given the MAF Scheduling).
This MDP is expressed by four components:

• State: xi ≜
(
Γi, Yi

)
∈ R2

+.
• Action: Zi ∈ R+.
• One–step cost:

ψλ(Γi,Yi, ui) = σY + µY Zi − λµY − λZi

+ (Zi + µY ) (2Yi + Zi + Γi) .
(39)

• State transition: Γi evolves as:

Γi+1 = Yi + Zi, (40)

while Yi+1 is independent of Yi.

The following theorem establishes that, under the average
cost criterion, it suffices to solve MDP 3 rather than MDP 2
when the MAF scheduling policy is employed.

Theorem 3 (Average-cost MDP Equivalence). Given the MAF
scheduling policy, for any sampling policy (Z0, Z1, . . .), the
long-term average costs corresponding to cρλ(·) in MDP 2 and
ψλ(·) in MDP 3 coincide exactly. Formally,

lim
n→∞

1

n

n−1∑
i=0

E[ψλ(Γi, Yi, ui)− cρλ(Γi,Mi, Yi, ui)] = 0. (41)

Proof. See Appendix C. ■

With this transformation, the previously intractable MDP
with transient and unbounded states becomes analytically
tractable. Since Γi is recurrent, standard solution methods,

such as the RVI algorithm, can be applied directly to solve
this problem.

D. Age-Optimal Sampling is All you Need
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Fig. 2. Relationship between different MDP formulations.

An insightful special case arises when ρ = 0. In this
scenario, the function H0(M,Γ) reduces to Γ, which in turn
simplifies the one-step cost to ψλ(Γ, Y, u) = c0λ(Γ,M, Y, u).
As a result, MDP 2 becomes fully equivalent to MDP 3 under
the MAF scheduling policy when ρ = 0. On the other hand,
it has been established in (18) that the MDP 1 is a classical
sum-AoI optimization problem when ρ = 0. Combining these
two observations leads to conclusion (2) in Fig. 2.

In contrast, for ρ > 0, the solution to MDP 1 remains
identical to that of MDP 3 under the MAF scheduling policy,
as indicated by conclusion (1) in Fig. 2. These structural
equivalences lead to the following corollary.

Corollary 1 (Age-Optimal Sampling is MSE-Optimal in the In-
finite Horizon). Given the MAF scheduling, the MSE-optimal
sampling is asymptotically equivalent to AoI-optimal sampling
in the infinite horizon.

This result allows us to directly leverage age-optimal sam-
pling policies in our estimation framework. In particular, we
can adopt the low-complexity threshold-triggered water-filling
sampling (WF) policy in [11, Eq. 44], given by:

Zi = max

{
0, T − ∆1(Di) + ∆2(Di)

2

}
,∀i ∈ N, (42)

where the threshold T can be obtained by golden-section
methods [35]. This policy is shown to achieve near-optimal
sum-AoI performance for multiple-sources scenarios.

IV. SIMULATION RESULTS

We evaluate the performance of the proposed joint sampling
and scheduling policy under correlated Wiener processes.
Unless otherwise specified, the correlation level is fixed at
ρ = 0.9, and MMSE fusion estimation is implemented at the
receiver. As a case study, the transmission delay is modeled
as a binary random variable: 0 with probability p, and Ymax

with probability 1− p.

Benchmark Policies:
• Zero-Wait (ZW) Sampling: Each source samples right

after the previous transmission completes, i.e., Zi = 0.
• Constant-Wait Sampling: A fixed delay Zi = d is

imposed between transmissions.
• Random (RAND) Scheduling: Each sensor is selected

at random, i.e., Pr(ai = m) = 1
2 for all m ∈ {1, 2}.



AoI ↔  MSE

Fig. 3. Finite-horizon time-average MSE and AoI under different scheduling
and sampling policies. Here Ymax = 20 and p = 0.95.

Our proposed MAF scheduling (33) plus Water-filling sam-
pling (42) are jointly referred to by WF+MAF.
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Fig. 4. Long-term average MSE and AoI under different scheduling and
sampling policies. We set d = 1 for constant-wait sampling. (a) p = 0.95;
(b) Ymax = 25.

Fig. 3 shows that time-average MSE and AoI converge as
the horizon T increases, validating the asymptotic equivalence
in Corollary 1. Notably, AoI serves as a provable upper bound
for MSE, as implied by (17), and the gap between the two
metrics vanishes as T → ∞.

Fig. 4 compares long-term MSE across policy combinations.
WF+MAF consistently achieves the lowest MSE. In Fig. (a),
its performance degrades slowly with increasing Ymax, unlike
ZW-based strategies which exhibit sharp deterioration. In
Fig. (b), WF+MAF remains robust across the parameter p.
These results demonstrate that the proposed joint sampling and
scheduling policy offers strong performance and robustness
under various channel delay distributions.

V. CONCLUSION

In this paper, we studied a remote information fusion
problem in which a remote fusion center aims to track a
multi-dimensional correlated Wiener process based on status
updates from multiple distributed sources communicating over
a shared channel with random delays. We explicitly solved
the joint optimization of sampling, scheduling, and estima-
tion policies, and derived a structural characterization of the
optimal solution that is both theoretically optimal and prac-
tically implementable. Notably, we established an asymptotic
equivalence between the time-averaged AoI and MSE under
the optimal MAF scheduling and MMSE estimation, even in

the presence of inter-source correlation. Future work includes
extending our framework to larger-scale systems with more
sensors, and exploring other classes of Markovian sources
beyond the correlated Wiener process.
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APPENDIX A
PROOF OF THEOREM 1

Consider the following zero-mean Gaussian vector:

Z ≜
(
X,Y1, Y2︸ ︷︷ ︸

Y

)⊤
=
(
W

(1)
t , W

(1)
t1 , W

(2)
t2

)⊤
. (43)

Its block covariance matrix, obtained from the coupled Wiener
process construction, is:

Σ =

(
ΣXX ΣXY

ΣY X ΣY Y

)
=

(
t [ t1 ρt2]

[ t1 ρt2]
⊤ ( t1 ρtmin

ρtmin t2

)) , (44)

where tmin = min{t1, t2}. Because X,Y1, Y2 are jointly
Gaussian random variables, one can calculate the following
conditional expectation [36, Chap. 2]:

E[X | Y1, Y2] = ΣXY Σ−1
Y Y

(
Y1
Y2

)
. (45)

A direct inversion of the matrix ΣY Y yields:

Σ−1
Y Y =

1

∆

(
t2 −ρtmin

−ρtmin t1

)
, ∆ = t1t2−ρ2t2min, (46)

and therefore

ΣXY Σ
−1
Y Y =

1

∆
[ t2(t1 − ρ2tmin), ρt1(t2 − tmin) ]. (47)

Substituting X =W
(1)
t , Y1 =W

(1)
t1 and Y2 =W

(2)
t2 into (45)

gives the conditional expectation. Setting t1 = t−∆1(t) and
t2 = t − ∆2(t) immediately yields (11). Symmetrically, we
can also establish (12).

APPENDIX B
PROOF OF (37)

For k ≤ ℓ, since ak = a′k for all k ≤ ℓ, by the update
rule (31), we have Γk = Γ′

k for these steps.
For k = ℓ+ 1, at step ℓ+ 1, the actions differ, so

Γℓ+1 = Γℓ + Yℓ + Zℓ, Γ′
ℓ+1 = Yℓ + Zℓ. (48)

which gives Γℓ+1 > Γ′
ℓ+1 since Γℓ > 0.

For k ≥ ℓ+2, We use induction. Suppose for some n ≥ ℓ+1
we have Γn ≥ Γ′

n. Since an = a′n for n > ℓ, we have:

Γn+1−Γ′
n+1 =

{
Γn − Γ′

n, if an = argmaxj{Sn,j},

0 if an = argminj{Sn,j}.
(49)

Both cases preserve the inequality Γn+1 ≥ Γ′
n+1. Thus, by

induction, Γk ≥ Γ′
k for all k. ■

APPENDIX C
PROOF OF THEOREM 3

From the update rule (30), we have

Mn =M0 +

n∑
i=1

(Yi−1 + Zi−1). (50)

By the Kolmogorov strong large number law,

lim
n→∞

Mn

n
> lim

n→∞

M0

n
+

∑n
i=1 Yi−1

n
→
a.s.
µY . (51)

Therefore, there exists k0 such that for all i ≥ k0,

Mi >
µY

2
i, ∀i ≥ k0. (52)

Denote y(u) and z(u) as the maximum value of Yi and Zi,
respectively. From (40), we obtain that:

Γ2
i = (Yi−1 + Zi−1)

2 ≤ 2(y(u))2 + 2(z(u))2. (53)

Substitute the above bounds into the left-hand side of (41):

lim
n→∞

1

n

n−1∑
i=0

E[ψλ(Γi, Yi, ui)− cρλ(Γi,Mi, Yi, ui)]

= lim
n→∞

1

n

n−1∑
i=0

(Zi + µY )

(
ρ2Γ2

i

Γi + (1− ρ2)Mi

)

< ρ2(z(u) + µY ) lim
n→∞

1

n

k0−1∑
i=1

Γ2
i

(1− ρ2)Mi
+

n∑
i=k0

Γ2
i

(1− ρ2)Mi

<
2ρ2(z(u) + µY )

µY (1− ρ2)
lim
n→∞

1

n

n∑
i=k0

Γ2
i

i

≤ 4ρ2(z(u) + µY )((y
(u))2 + (z(u))2)

µY (1− ρ2)
lim
n→∞

1

n

n∑
i=k0

1

i
= 0,

(54)
where the last equality follows since 1

n

∑n
i=k0

1
i → 0 as n→

∞. By the squeeze theorem, we complete the proof. ■


