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Abstract—In the ultra-reliable low-latency communications
(URLLC) and the prospective 6G communications, the optimiza-
tion of the age of information (AoI) will enhance the performance
in the real-time status update situations. Spinal codes is a new
type of rateless codes which can achieve the channel capacity over
both the additive white Gaussian noise (AWGN) channels and
the binary symmetric channels (BSC), so minimizing the AoI of
Spinal codes will significantly decrease the latency of the real-time
status update system. In this paper, we firstly study the AoI of a
specific code—Spinal codes, and derive the upper bound of the
AoI of Spinal codes. We also prove that obtaining a fine-grained
rate in the transmission pattern will decrease the AoI of Spinal
codes. Then we formulate the optimizing problem and derive
that the incremental-tail-transmission pattern of Spinal codes
is the optimal pattern to minimize the AoI. Simulation results
demonstrate that the upper bound of the AoI of Spinal codes is
tighter when the channel condition is better and the incremental-
tail-transmission pattern of Spinal codes is the optimal pattern to
achieve the lowest AoI compared with the puncture-based pattern
and the pass-to-pass pattern.

Index Terms—Spinal codes, age of information (AoI), trans-
mission pattern.

I. INTRODUCTION

In the ultra-reliable low-latency communications (URLLC)
[11], the age of information (AoI) is often considered as
an index to measure the performance of the real-time status
update system [1–3]. AoI measures the time from the sender
generating the status update to the receiver succeeding in
receiving it. Specifically, if the latest status update generated
at the time U(t) is received at the time t, then the AoI of
the update is A(t) = t − U(t). The URLLC system is one
of the three main applications of 5G, and the prospecting 6G
will also attach great importance to it. With more and more
data transmitted and status updates generated and received in
the near future, AoI optimization will decrease the latency of
transmission and enhance the experience of real-time status
update users.

Recently, there have been a lot of research corresponding
to the AoI optimization in the physical layer. [8] and [9]
respectively study the AoI of a coding system under the
hybrid automatic repeat-request (HARQ) scheme and the
Markov decision process (MDP) scheme, and both derive
the conclusion that the transmitter should update the status
when the AoI reaches a certain threshold. In [14], the author
derives the expression of AoI of a linear group code, and
simulation results of the AoI of the low density parity check
(LDPC) codes with different parameters are given, but no
further analysis of the AoI expression is provided. In [12],
the expression of the AoI of the random linear codes is

Fig. 1. The encoding process of Spinal codes.

derived, and the analysis of the code scheme optimization,
or the ”refinement” of the code block size, is specifically
given. These works have made great contributions in the AoI
optimization of the coding system. However, until now few
previous works pay much attention to the AoI of some specific
codes, such as polar codes or Spinal codes. Indeed, optimizing
the AoI of some specific codes, such as Spinal codes which has
good rate performance, will significantly and fundamentally
decrease the latency of the status update system compared
with optimizing that of the network layers.

Spinal codes [4, 5] has been proved to reach the channel
capacity over the additive Gaussian white noise (AWGN)
channel and the binary symmetric channel (BSC) [6]. The
key of Spinal codes, as is depicted in Fig. 1, are the hash
function and the random number generator (RNG), which can
produce pseudo-random code symbols as many as needed.
From the aspect of real-time status update with usually short
code length, Spinal codes is adaptive in the code rate without
considering the channel condition, so it can be applied in the
situations where the channel conditions are extremely bad or
in other words, extreme URLLC systems. In the coming 6G
era, optimizing the AoI of Spinal codes from the perspective
of its transmission pattern will further enhance its reliability
and the transmission latency of status updates.

In this paper, we combine the transmission pattern character-
istics of Spinal codes and the AoI expression derived in [12],
and give some further conclusions of the AoI expression. We
derive that for Spinal codes over the BSC, the transmission
pattern of each round will have an impact on the AoI.
Specifically, we prove that for Spinal codes, the AoI is strictly
decreasing with the probability of decoding success in each
round. Then we take the frame error ratio (FER) upper bound
into consideration and derive the upper bound and the limit of

978-1-7281-9441-7/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 C

om
m

un
ic

at
io

ns
 W

or
ks

ho
ps

 (I
C

C
 W

or
ks

ho
ps

) |
 9

78
-1

-7
28

1-
94

41
-7

/2
0/

$3
1.

00
 ©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
C

W
or

ks
ho

ps
50

38
8.

20
21

.9
47

36
43

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 02,2024 at 00:32:00 UTC from IEEE Xplore.  Restrictions apply. 



the AoI of Spinal codes. Based on the upper bound of the AoI,
we formulate an optimization problem and give the solution
algorithm. Simulation results show that the upper bound of
the AoI is tighter when the crossover probability of the BSC
is low, and the incremental-tail-transmission pattern takes an
advantage and achieves the minimum AoI.

The main contributions of this paper can be summarized as
follows:
• We analyze the AoI of a specific code, Spinal codes. To

the best of our knowledge, this is the first research of the
AoI analysis corresponding to a specific channel codes.

• On the basis of the derived AoI expression, we analyti-
cally show that transmitting less symbols in each round,
or specifically, puncturing is a way to decrease the AoI.

• By formulating an AoI minimization problem, we obtain
that for Spinal codes, incremental-tail-transmission pat-
tern achieves the least AoI compared to the pass-to-pass
transmission pattern and the puncture-based pattern.

The rest of this paper is organized as follows. Section II
introduces the basic of Spinal codes. In Section III, the AoI
upper bounds of Spinal codes are derived. The formulation of
the problem and solving algorithm are presented in Section
IV. In Section V, simulation results are provided, followed by
conclusions in Section VI.

II. PRELIMINARIES

A. Encoding and Decoding Process of Spinal Codes

Different from LT codes and Raptor codes, Spinal codes use
hash function and random number generator (RNG) to code
messages as infinite pseudo-random symbols. As depicted in
Fig.1, the encoding process of Spinal codes contains 4 main
steps:

1) An n-bit data frame (or message) M is divided into n/k
blocks, with each block containing k bits. The block
message is called Mi, i = 1, 2, ...n/k.

2) The hash function h receives two inputs: a k-bit message
mi and a v-bit hash value si−1, and generates one
output: a v-bit value si, usually s0 = 0v , where h is:
{0, 1}v × {0, 1}k → {0, 1}v
Note that the transmitter and receiver both know the first
spine value s0.

3) The hash value si serves as the seed of RNG, and
generates c-bit code symbols where RNG is: {0, 1}v ×
N→ {0, 1}c
We also denote xi,j as the output symbols.

4) The code symbols will be mapped to a channel input to
adapt to the channel characteristics, where f is : xi,j →
Ω, and usually in the BSC, f = 1, which means the code
symbols generated from RNG will be straightly sent to
the channel.

The transmitter will continuously generate code symbols and
send them pass-by-pass during each round, until the sym-
bols are sufficient to be successfully decoded. The reasons
why Spinal codes is capacity-achievable are the pairwise-
independent characteristic of the hash function and pseudo-

Fig. 2. The uniform puncturing with
→
g = [8, 4, 6, 2, 5, 1, 7, 3]. In each

subpass,the sender transmits the symbols marked by black circles while those
gray circles represent symbols that have already been sent in previous sub-
passes.

random characteristic of the RNG, which result in huge
difference of code symbols between different messages.

The optimal decoding algorithm of Spinal codes is the max-
imum likelihood decoding (ML decoding), where the decoder
finds the encoded messages that have the least difference
with the received code symbols. We denote the vector of the
received symbols as y, and the vector of the encoded message
symbols x(M) for the message M , then the ML rule of Spinal
codes over the BSC is

∧
M ∈ arg min

M ′∈{0,1}n
‖y ⊕ x(M ′)‖. (1)

That is, to search for the message M ′ whose encoded sym-
bols have the smallest Hamming distance with the received
symbols.

ML decoding is the optimal decoding method, but its
complexity increases exponentially with message length, so
ML decoding is only applied in short-code scheme. Long
message symbols are usually decoded by bubble algorithm
which has lower complexity.

B. Puncture-based Transmission Scheme of Spinal Codes

We have talked about the transmission scheme of pass-
by-pass sending. In [5] the author remarked that the rate
performance is proportional to k

l , where k is the segment
parameter and l is the number of the total pass when the
message get decoded, but only increasing k will result in high
decoding complexity. Puncturing is a trade off of the decoding
complexity and the rate performance.

Fig. 2 shows a puncturing scheme of Spinal codes with
n = 8, k = 2. Each pass is divided into 8 subpasses. In subpass
i, the black-colored symbols will be transmitted, with the gray-
colored representing the symbols sent before. In this case, the
decoding success will happen in any subpass. Although the
transmission pattern changes, the decoding algorithm of ML
or bubble still works. For the skipped subpasses, the decoding
cost will be considered as 0.

Besides the uniform puncturing scheme above, we can also
take the non-uniform puncturing scheme, where symbols that
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correspond different spine values are sent different times. In
[13], the author proposes a triangle-shaped puncturing scheme,
and simulation results prove that this transmission pattern will
enhance the rate performance of Spinal codes compared to the
uniform puncturing scheme.

III. UPPER BOUNDS OF THE AOI FOR SPINAL CODES

In this section, we firstly analyze the monotony of the AoI
expression of Spinal codes. Then we will give the upper bound
of the frame error ratio (FER) of Spinal codes, which are our
previous works. Based on these we derive the upper bound
of the AoI of Spinal codes, which will serve as the objective
function in the next section. We also prove that a fine-grained
rate set will decrease the AoI of Spinal codes.

A. Analysis of the Monotony of the AoI Expression

An incremental-redundancy code can be called
{n1, n2, ...nm}, if data frames are coded and initially
n1 bits are transmitted, and will experience at most (m-1)
rounds of incremental transmission if it cannot be successfully
decoded. We denote the code length that has been transmitted
before round i (round i included) as ni, i = 1, 2, ...m, and the
probability that the data frame can be successfully decoded
before round i (round i included) Ps(ni), so we can easily
get that Ps(ni) = 1 − Pe(ni), with Pe(ni) representing the
FER of the code at round i. For Spinal codes, let d be the
code length of one pass, and c = 1, so we can get that d = n

k .
For the pass-to-pass transmission pattern, at the first round,
the transmitter send P passes, and if the message cannot be
decoded, then an extra pass will be incrementally sent until
the total code length reaches nm. In other words, the rounds
will be no more than m − 1, so we can easily know that
ni = (P + i − 1)d, i = 1, 2, ...m, then according to [12], the
expression of the average AoI is

A = −1

2
+ d(

P +m− 1−
m−1∑
i=1

Ps(ni)

Ps(nm)

+

(P +m− 1)
2 −

m−1∑
i=1

(2P + 2i− 1)Ps(ni)

2(P +m− 1−
m−1∑
i=1

Ps(ni))

).

(2)

For the puncture-based transmission pattern, when the data
frame cannot be decoded at a certain round, we only incre-
mentally send code symbols that correspond a certain spine
value instead of the whole pass. Let c = 1, which means that
in each round only one symbol is incrementally transmitted.
In this case, the expression of the average AoI is

A = −1

2
+

N +m− 1−
m−1∑
i=1

Ps(ni)

Ps(nm)

+

(N +m− 1)
2 −

m−1∑
i=1

(2N + 2i− 1)Ps(ni)

2(N +m− 1−
m−1∑
i=1

Ps(ni))

,

(3)

where N = Pd.
Analyzing the two expressions, we can derive some theo-

rems as below.

Theorem 1. (Monotony of the AoI) A is strictly decreasing
with Ps(ni) ∈ (0, 1), i = 1, 2, ...m.

Proof. Due to the limited space we will only give the proof
for (3) and the method is the same for (2).

We will consider the monotony of the simplest {n1, n2}
code. The expression of AoI in this situation will be

A = −1

2
+
N + 1− Ps(n1)

Ps(n2)

+
(N + 1)

2 − (2N + 1)Ps(n1)

2(N + 1− Ps(n2))
, N = Pd.

(4)

For the two terms related to Ps(ni), Ps(n1) both serve as
the numerator with negative coefficient, so A is decreasing
with Ps(n1). Then we consider a dynamic transmission where
codes are sent round by round, that is

{n1, n2, ...nm} → {n1, n2}+ {n2, n3}+ ...+ {nm−1, nm}.
(5)

In this case, the multiple-round transmission can be treated
as several two-round transmissions. For each two-round trans-
mission {ni, ni+1}, we can prove that A is decreasing with
Ps(ni). If the (m + 1)th transmission is processed, then A
will be also decreasing with Ps(nm) So A is decreasing with
Ps(ni), i = 1, 2, ...m in (0, 1).

B. The Upper Bound and the Limit of the AoI of Spinal Codes

From Theorem 1 we can know that a high probability of a
decoding success in each round will fundamentally decrease
AoI. Furthermore, if we can derive some conclusions about
the FER of Spinal codes, then the AoI or its bound of Spinal
codes can be calculated. Now we will give the FER upper
bound of Spinal codes.

Lemma 1. (Our Previous works) (FER upper bound of
Spinal codes over the BSC) Consider the Spinal codes over
the BSC with message length n, segmentation parameter k,
modulation parameter c and crossover probability f , then the
FER under ML decoding can be upper bounded by[15]

Pe ≤ 1−
n/k∏
i=1

(1− εupperi (Ti, Ui)), (6)

with

εupperi (Ti,Ui) =

Ti∑
t=0

{(
Ti

t

)
f t (1− f)

Ti−t

×min

[
1, (Ui − 1)

t∑
k=0

(
Ti

k

)
2−Ti

]}
,

(7)

where Ti = L(n/k − i+ 1), Ui = 2k(n/k−i+1).

From lemma 1 we will know that the probability of a
decoding success has a lower bound. Combining Lemma 1
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and Theorem 1, we can derive the upper bound of the AoI of
Spinal codes over the BSC.

Theorem 2. (The upper bound of the AoI of Spinal codes
over the BSC) Consider the Spinal codes over the BSC
with message length n, segmentation parameter k, modulation
parameter c and crossover probability f . We denote the upper
bound of FER of spinal codes as Pe(i), i = 1, 2, ...m, where i
is the transmission round, then the AoI of Spinal codes under
ML decoding can be upper bounded by

A < −1

2
+ d(

P +
m−1∑
i=1

Pe(i)

Pe(m)

+

(P +m− 1)
2 −

m−1∑
i=1

(2N + 2i− 1)(1− Pe(i))

2(P +
m−1∑
i=1

Pe(i))

),

(8)

for the pass-to-pass transmission pattern and

A < −1

2
+

N +
m−1∑
i=1

Pe(i)

Pe(m)

+

(N +m− 1)
2 −

m−1∑
i=1

(2N + 2i− 1)(1− Pe(i))

2(N +
m−1∑
i=1

Pe(i))

,

(9)

where N = Pd for the puncture-based transmission pattern,
and Pe(i) has been given in (6) and (7).

From Theorem 1 we can not only derive the upper bound
of the AoI, but also calculate the limit when the channel is so
ideal that no error will happen in the transmission. According
to the theorem below we can know that the limit is only the
function of the code length in the first round.

Theorem 3. (The limit of AoI) When Ps(ni) → 1, i =
1, 2, ...m, we will derive that the AoI upper bound has a limit
of lim

Ps(ni)→1
A = − 1

2 + 3
2N .

Proof. According to the monotony of Ps(ni), i = 1, 2, ...m,
let Ps(ni) = 1,then the the limit will be reached, and we can
derive the result of the AoI limit.

Remark 1. For the situation when a whole pass is incremen-
tally sent if a frame cannot be decoded, the limit is similarly
3
2Pd. The proof is the same as Theorem 3.

We have derived the expression of the AoI of Spinal codes
under two incremental transmission pattern, which are the
puncture-based pattern and the pass-to-pass pattern. If we take
the uniform puncture pattern, where n = 8, k = 2, c = 1,
→
g = [g1, g2, g3, g4] where g1, g2, g3, g4 are different from each
other. We will prove that the former pattern will have lower
AoI.

Theorem 4. (Puncture-based pattern have lower AoI than
pass-to-pass pattern) Consider Spinal codes with message

length n, segment parameter k and modulation parameter 1, let
the code length of a pass d = n/k. Initially N code symbols
are transmitted, and if decode fails, (1) d symbols will be
incrementally sent under uniform puncture pattern in the next
d rounds, or (2) they are incrementally sent as a whole pass
in the next round. Let the average AoI of situation (1) be A1

and situation (2) A2, then we have A1 < A2.

Proof. We take n = 8 and k = 2 as example, and the same is
for other values of n. We first write the code pattern according
to [12] as [N,N+1, N+2, N+3, N+4] and [N,N+4] for (1)
and (2) respectively. Obviously Ps(n1) < Ps(n2) < Ps(n3) <
Ps(n4) because of the characteristics of Spinal codes, so we
can calculate their difference

A1 −A2 =

3Ps(n1)−
4∑

i=2

Ps(ni)

Ps(n5)

− (N + 4)
2 − 4(2N + 4)Ps(n1)

2(N + 4− 4F (n1))

+

(N + 4)
2 −

4∑
i=2

(2N + 2i− 1)Ps(ni)

2(N + 4−
4∑

i=2

Ps(n1))

<
3Ps(n1)− Ps(n2)− Ps(n3)− Ps(n4)

Ps(n5)

+
3Ps(n1) + Ps(n2)− Ps(n3)− 3Ps(n4)

2(N + 4− 4Ps(n1))
< 0.

(10)

Remark 2. Theorem 4 implies that transmitting less codes in
each round will decrease the AoI. In the next section, we will
set the step of code length as 1 in the optimization problem
to get a lower AoI minimum.

IV. AOI OPTIMIZATION OF SPINAL CODES

In this section, we will optimize the transmission pattern of
Spinal codes with the minimum AoI, using the upper bound
of AoI derived in Section III. We first formulate the problem
as an integer programming problem and give the solution
algorithm. We observe that under ML decoding and with the
total code length of the data frame restricted, if the code
length of the first round is fixed, the minimum AoI can be
reached by the incremental-tail-transmission pattern. Based on
this conclusion, we again study the minimum AoI under the
incremental-tail-transmission pattern with the fixed total code
length. We derive that the less code symbols are transmitted
in the first round, the less AoI Spinal codes will reach.

A. Problem Formulation and Solution

We aim to minimize the AoI of Spinal codes under the
restriction of total code length. From Section III we know that
the AoI is decreasing with the probability of decoding success
in each round, so the most important parameter of the AoI of
Spinal codes is the transmission pattern variation during each
round, which directly affects the FER of Spinal codes.
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For Spinal codes over the BSC with message length n
and segment parameter k, N symbols are sent in the first
round, and one symbol will be incrementally transmitted in
the subsequent rounds with the total code length no more than
Lmax, then we can formulate the problem of AoI optimization
as:

Problem 1. Find the total pattern P = [p1, p2, p3, ...pn
k

] that:

minA

s.t.

{
N,m ∈ Z+

N +m− 1 < Lmax

(11)

It is obviously a linear integer programming, and easy to
solve it by the iteration algorithm. In each round, we will
choose the symbol that will achieve the lowest AoI to transmit,
by choosing the smallest FER of the patterns according to the
monotony of the AoI in Theorem 1, until the total code length
reaches Lmax. The algorithm that solves the problem can be
described as Algorithm 1.

Algorithm 1 The optimal transmission pattern of the AoI of
Spinal codes

1: P = [r, r, ..., r], N = r · nk , m = 0, f = 10−3.
2: while N +m < Lmax do
3: Update the incremental round: m← m+ 1
4: for i← 1 to n/k do
5: Update the decision variable:Pi ← Pi + 1
6: Calculate FERUpperBound(i) under the crossover

probability f and store them
7: restore the decision variable: Pi ← Pi − 1
8: end for
9: Search for the minimum of FERUpperBound and get

the index d
10: Pd ← Pd + 1
11: end while
12: end

Solving the problem, we will get the transmission pattern
that has minimum AoI. We take n = 8, k = 2, c = 1, r = 3
as example, and use Algorithm 1 to solve, and the results are
shown in Table I.

TABLE I
THE OPTIMAL TRANSMISSION PATTERN OVER THE BSC

Total code length Lmax Decision variables
20 L = [3, 3, 3, 11]
24 L = [3, 3, 3, 15]
28 L = [3, 3, 3, 19]
32 L = [3, 3, 3, 23]

From Table I, we can conclude that continuously transmit-
ting the code symbols from the n

k th spine value, or in other
words, incremental-tail-transmission pattern, will result in the
lowest AoI.

We have derived the optimal transmission pattern—
incremental-tail-transmission, but in Algorithm 1 the initial
code length is fixed. In fact, the code length of the first round

also affects the AoI according to Theorem 3, so the initial
passes of symbols can also be optimized. We can write the
optimization problem as

Problem 2. Find the total pattern P = [p1, p2, p3, ...pn
k

] that:

minA

s.t.

 N,m ∈ Z+

N +m− 1 = Lmax

N = ki, i = 1, 2, ...Lmax/
n
k

(12)

The algorithm below will search for the minimum AoI
with the total code length restricted under the incremental-
tail-transmission pattern. Solving the problem, we derive that

Algorithm 2 The algorithm to optimize the AoI in initial
passes under incremental-tail-transmission pattern

1: Lmax, f = f0
2: for r ← 1 to Lmax/

n
k do

3: N ← r · nk ,m← Lmax − r · nk , P ← [r, r, r, ..., r]
4: Pn

k
← Pn

k
+m

5: Calculate AoIUpperBound(r) under the pattern P
6: end for
7: Find the AoIUpperBound minimum and get the index d
8: end

when d = 1, which means only transmit one pass in the first
round, the minimum AoI will be reached.

Remark 3. Algorithm 2 does not take the feedback delay and
the transmission delay into consideration. If the ACK/NACK
feedback latency is considered, the least initial passes could
not be the optimal solution.

V. SIMULATION RESULTS

In this section, some simulation results of the AoI will be
presented to verify the upper bound of the AoI of Spinal codes
which has been derived in Section III. Moreover, the AoI
of Spinal codes under different transmission pattern will be
compared to further prove the solution given in Section IV.

Fig. 3 compares the average AoI simulation and the AoI
upper bound of Spinal codes derived in section 3.Concretely,
we choose n = 8, k = 2, c = 1 in the simulation to apply
ML decoding algorithm. We take the pass-to-pass transmission
pattern where initially 5 passes of symbols are transmitted and
the total passes of symbols are no more than 14. According
to Fig. 3, the AoI upper bound in this case is tighter when the
crossover probability is low. But the difference between the
upper bound and simulation results is high when the channel
error probability is high, because in this case lower correct
probability in some rounds will enlarge the AoI upper bound,
and correspondingly its difference from the simulation results.

Fig. 4 compares the average AoI simulation of Spinal codes
under three different transmission pattern: pass-to-pass pattern,
puncture-based pattern and the incremental-tail-transmission
pattern. Specifically, we choose n = 8, k = 2, c = 1, and
at the first round 3 passes of code symbols are transmitted.
According to Fig. 4, the AoI simulation results of the three
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transmission patterns have a large difference among them-
selves. The pass-to-pass pattern achieves the highest AoI, and
the incremental-tail-transmission pattern achieves the lowest
AoI among the three patterns. Besides, the puncture-based
transmission pattern takes the second place, proving that a
fine-grained rate set will decrease the AoI of Spinal codes.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have derived the upper bound of the
AoI of Spinal codes, and prove that transmitting less codes
in each round will significantly decrease the AoI of Spinal
codes. Then we formulate and solve the AoI optimization
problem, concluding that incremental-tail-transmission pattern
is the optimal pattern to achieve the lowest AoI of Spinal
codes, and the less the initial passes are, the lower AoI Spinal
codes will achieve. In the future, the time AoI of the systems
with transmission delay and feedback delay will be studied,
and also the joint source-channel coding with Spinal codes
and other block codes combined will be researched.
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