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Abstract—Links in practical systems, such as satel-
lite–terrestrial integrated networks, exhibit distinct delay distri-
butions, intermittent availability, and heterogeneous energy costs.
These characteristics pose significant challenges to maintaining
timely and energy-efficient status updates. While link availability
restricts feasible transmission routes, routing decisions determine
the actual delay and energy expenditure. This paper tackles these
challenges by jointly optimizing sampling and routing decisions
to minimize monotonic, non-linear Age of Information (AoI). The
proposed formulation incorporates key system features, including
multiple routes with correlated random delays, stochastic link
availability, and route-dependent energy consumption. We model
the problem as an infinite-horizon Constrained Semi-Markov
Decision Process (CSMDP) with a hybrid state–action space
and develop an efficient nested algorithm, termed Bisec-REAVI,
to solve this problem. We reveal a well-defined jointly optimal
policy structure: (i) The optimal routing policy is a monotonic
handover policy that adapts to the availability of routes and their
mean delays; and (ii) The optimal sampling policy is a piecewise
linear waiting policy, with at most

(
N
2

)
+N breakpoints given N

routes. Numerical experiments in a satellite–terrestrial integrated
routing scenario demonstrate that the proposed scheme efficiently
balances energy usage and information freshness, and reveal a
counter-intuitive insight: even routes with higher average delay,
higher delay variance or lower availability can still play a critical
role in minimizing monotonic functions of AoI.

I. INTRODUCTION

A. Background
In an increasingly connected world where systems rely

on remotely sampled data to make real-time decisions, the
freshness of data samples has become a key driver of appli-
cation performance. Hence, information freshness is emerging
as a Key Performance Indicator (KPI) across a wide range
of applications, supported by next-generation communication
networks spanning wired, wireless, and non-terrestrial links.
For instance, in remote-sensing-based emergency response
systems, access to fresh data regarding environmental variables
supports real-time risk assessment and enhances response
efficiency. Similarly, in Vehicle to Everything (V2X) scenarios,
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vehicles rely on continuously updated information collected
through multi-sensor data fusion to navigate safely and adapt
to rapidly changing environmental conditions. Moreover, in
Industrial Internet of Things (IIoT) applications, the staleness
of sensor data negatively impacts production efficiency, equip-
ment maintenance timing, and overall operational safety.

This growing emphasis on information freshness has led
to the development of the Age of Information (AoI) metric
that quantifies it [2]. Distinct from traditional latency, AoI
provides a receiver-centric, flow-level measure of information
timeliness. Formally, at any time t, the AoI is defined as
∆(t) ≜ t − U(t) , where U(t) denotes the generation time
of the latest received sample. Maintaining a low AoI requires
both sufficiently frequent updates and low-latency delivery,
thus coupling throughput and delay in a novel performance
metric. Hence, AoI combines the conventional performance
metrics of latency and throughput in a novel way. Over the
past few years, AoI minimization has been studied under
various constraints and network models, including energy-
limited update policies [3]–[5], multi-hop and multi-source
networks [6]–[10], and broadcast settings [11]. Furthermore,
in scenarios where the significance of data extends beyond
temporal freshness, more sophisticated evaluation frameworks
have been developed [12]–[18]. Some of these frameworks
utilize AoI as an intermediate metric to capture task-specific
relevance through the freshness of data samples [17].

B. Motivation
In this paper, we focus on the optimization of AoI. Our

goal is to extend the formulation of Age-optimal sampling first
proposed in [19] to a case where there are multiple routing
options between the source and the destination. The new
formulation proposed in this paper was inspired and motivated
by the growing interest in Satellite IoT and integrated TN-
NTN in 5G and 6G, where data transmission decisions are
sometimes faced with a choice between routing through non-
terrestrial links versus terrestrial connections:

(i) Routing through terrestrial links typically offers low-
latency and energy-efficient transmission, owing to the
relatively short propagation distance and mature ground-
based infrastructure such as optical fiber and cellular
networks. These links are generally stable under normal
operating conditions and can support high-throughput,
delay-sensitive services. However, their performance and
reliability are susceptible to network congestion, coverage
holes, and infrastructure failures.

(ii) Routing through non-terrestrial links often exhibits
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Fig. 1. A remote monitoring system, where status updates are transmitted
through N heterogeneous routes.

intermittent availability because the space–atmosphere
channel and satellite geometry change over time. In
addition to orbital dynamics and visibility windows,
beam/footprint handovers, gateway reassociation, and ISL
route reconfiguration introduce short disruptions that
fragment service into available/unavailable epochs. Prop-
agation conditions vary with rain attenuation (Ku/Ka),
cloud ice/water content, ionospheric irregularities, and
geomagnetic storms, which can drive rapid SNR fluctua-
tions and temporary outages. Even during physical avail-
able periods, random-access collisions, beam scheduling,
and backhaul bottlenecks can make access bursty.

Moreover, delay statistics across routes may be correlated
due to shared infrastructures, spectrum usage, or satellite
visibility patterns, which further couples the sampling and
routing decisions. These practical considerations result in
route-dependent delay statistics, stochastic link availability,
and heterogeneous energy costs, which motivates a unified
framework that jointly optimizes both the sampling time and
the routing path. Our formulation addresses the fundamental
question of how route selection impacts information freshness
in hybrid terrestrial/non-terrestrial environments, and provides
a theoretical foundation for age-aware joint sampling and
routing in next-generation communication networks.

C. Related Works and Contributions
• System Model: We formulate a joint sampling and routing
problem in which a transmitter optimizes both the sampling
interval and the transmission route to minimize the long-
term average AoI at the destination, subject to an average
routing energy constraint and route availiability constraint.
Our formulation is a direct extension of the problem in
[19], and in contrast to this and other prior work where the
sampling problem is attacked under given delay statistics [14]–
[16], [20], our system model takes a proactive approach by
actively selecting and switching routes to control the delay
experienced by status updates. Meanwhile, unlike existing
multi-channel scheduling problems that either focus on ho-
mogeneous channels with uniform one-slot delays [21] or
heterogeneous channels where each channel experiences an
on-off constant discrete delay [22], [23], our work consid-

ers distinct continuous delay distributions across different
routes and jointly optimizes sampling and route selection
strategies. This works generalizes our prior work in [1] by
incorporating the following practical aspects: (i) Correlated
route delays, motivated by shared infrastructures or congestion
effects that couple delay statistics across different routes; (ii)
Stochastic route availability, modeled as independent random
on/off links with fixed availability probabilities, capturing real-
world uncertainties such as satellite visibility, atmospheric
attenuation, and space-weather-induced disruptions and (iii)
Route-dependent energy consumption under an average energy
constraint, which is essential for energy-limited platforms such
as satellites or IoT devices.
• Solution Methodology: We show the problem can be
formulated by a Constrained Semi-Markov Decision Process
(CSMDP) with uncountable hybrid state and action spaces.
The state captures discrete link availability and continuous
delay, while the action includes both routing choices and
sampling intervals. Such CSMDPs are known to be chal-
lenging to solve due to the size of the state and action
spaces, and previous research has addressed this complexity
by: (i) discretizing the uncountable state space and the action
space [24], [25], which introduces quantization error or; (ii)
focusing on a special case of SMDP where the state transitions
are independent of actions1 [14], [19], [20], which, however,
does not hold in our scenario. In this paper, we develop a new
nested algorithm namely Bisection Relative Expected Action
Value Iteration (BISEC-REAVI) that directly solves this class
of SMDPs without discretizing the space. To the best of our
knowledge, this is the first algorithm that efficiently solves
hybrid-state CSMDPs while preserving structural optimality
and avoiding discretization error.
• Structural Results: We prove that each of the jointly op-
timal sampling and routing policies exhibit a graceful thresh-
old structure: (i) The routing policy is a thresholds-based
handover policy, where a specific route is selected when the
current AoI at the receiver falls within certain range, precisely
determined by multiple thresholds; (ii) A new sample is
taken and transmitted when the AoI at the receiver reaches
a threshold that is a function of the selected transmission
route. These structural properties deem the policies suitable for
practical implementation. We designed an efficient algorithm
to determine these thresholds.
• Counter-Intuitive Insights: We test our algorithms on
the model of an integrated satellite-terrestrial communication
network scenario. Our simulation results reveal an intriguing
insight: routes with higher mean delay, greater variance, or
lower availability can still contribute to minimizing AoI. This
finding challenges conventional wisdom that may prioritize
routes with minimal mean delay or delay variance character-
istics. It demonstrates that the strategic utilization of diverse
routing options in complex network environments can lead to
superior information freshness.

1This allows the Markov decision process to be reduced to a renewal reward
process, thus simplifying the analysis.



II. SYSTEM MODEL

We consider a remote monitoring system, as illustrated
in Fig. 1, consisting of a source, a sampler, a router, and
a monitor. Status updates are timely generated, and each is
transmitted through one of the N heterogeneous routes, with
the objective of maintaining the freshest possible information
on the monitor at all times.

A. Persistent and Intermittent Links
In this work, we consider a heterogeneous network com-

prising multiple communication routes, which we categorize
into two distinct types based on their physical characteristics
and long-term availability: Rs for persistently available links,
and Ri for intermittent links with stochastic availability.

• Persistent Routes (Rs): The routes in set Rs are con-
tinuously accessible over time and typically correspond
to terrestrial links such as fiber-optic or cellular infras-
tructure. Due to their stable physical environment and
minimal susceptibility to external disruptions, these links
exhibit deterministic availability, and are modeled with an
availability probability of pk = 1, k ∈ Rs. At least one
route in the network belongs to this category, ensuring
that the system can always transmit data, albeit potentially
at higher latency or lower throughput. Without loss of
generality, we denote this persistent route by index k = 1,
as shown in Fig. 1.

• Intermittent Routes (Ri): whose availability fluctuates
over time due to stochastic factors. These routes represent
satellite links or other opportunistic channels, whose
availability is inherently stochastic due to physical fac-
tors such as satellite orbital motion, line-of-sight (LOS)
constraints, or environmental interference (e.g., weather).
Each intermittent route k ∈ Ri is characterized by a
stationary availability probability pk ∈ (0, 1), which
denotes the long-term fraction of time the route is usable.

B. Correlated Random Delays
The transmission delays across different routes at a given

transmission instance may be statistically dependent. That
is, the random variables {k}k∈N representing the route-wise
delays are jointly distributed according to a stationary mul-
tivariate distribution Q, which captures the variability and
potential correlation between different routes. This setting
reflects realistic phenomena such as correlated queuing delays,
weather-induced slowdowns, or congestion affecting multi-
ple routes simultaneously. The delay vector is denoted by
T ≜ (T1, T2, . . . , TN ) ∼ Q, with joint cumulative distribution
function (CDF) FT(t1, . . . , tN ).

We denote the marginal delay distribution of route k by
Qk, i.e., Tk ∼ Qk, and assume that each Qk has finite first
and second moments. Specifically, the mean and variance of
the delay over route k are given by µk ≜ EQk

[Tk] < ∞ and
σ2
k ≜ EQk

[(Tk − µk)
2] <∞, for all k ∈ N .

C. Heterogeneous Energy Costs
The system is subject to a long-term average energy con-

straint denoted by Emax, which limits the energy consumption

over time. This constraint is particularly relevant in energy-
constrained systems such as remote sensing applications
or satellite-terrestrial networks, where power sources (e.g.,
battery-powered ground terminals or solar-powered satellite
relays) are limited.

Each update cycle incurs two types of energy costs:

• Sampling Energy Cost: Every time a new status update
is generated, a fixed amount of energy Cs > 0 is incurred.
This cost accounts for sensing, computation, and other
acquisition overheads required to produce a fresh update.

• Transmission Energy Cost: Upon sampling, the gen-
erated update is transmitted through a selected route k.
Each route incurs a per-unit-time transmission energy
cost, denoted by a function gt(k). This cost reflects
route-specific factors such as propagation loss, transmis-
sion power requirements, protocol configurations, and
hardware-level energy consumption. The energy con-
sumed for transmitting an update over route k is:

Etx(k, Tk) = gt(k) · Tk,

where Tk is the stochastic delay experienced on route k.

This energy model introduces a trade-off between timeliness
(i.e., age of information) and energy efficiency. For example,
lower-delay routes may be intermittently available but may
also incur higher energy per unit time (e.g., high-bandwidth
satellite links), whereas persistent links might offer lower
energy efficiency due to higher latency.

We also assume a non-preemptive system, where a new
transmission can begin only after the previous one has been
completed. Upon receiving each data sample, the monitor
sends an ideal acknowledgment (ACK) to the transmitter, indi-
cating that the system is ready to initiate the next transmission.

We adopt the generate-at-will model [4], [19], in which
the sampler can become active at any time, provided that a
new transmission is allowed. We next introduce some nota-
tion. After receiving the ACK corresponding to the previous
transmission, the (i + 1)-th data sample is generated and
submitted to route Ri, selected from the pool of available
routes Ri, at time instant Si+1. It is subsequently delivered to
the monitor at time instant Di+1 = Si+1 + Yi+1, where Yi+1

denotes the random transmission delay experienced by the
(i + 1)-th sample. The overall energy cost for transmitting
the i-th update is:

Ei = Cs + Yi gt(Ri).

Since only one route is selected per transmission epoch,
and the delays of the remaining routes are not observed, we
model Yi+1 as a random variable drawn from the marginal
distribution QRi . This modeling choice remains valid even
in the presence of correlation among routes, as the scheduler
observes and utilizes only the delay associated with the chosen
route.

The initial conditions of the system are set as follows: a
sample is submitted to route k, arbitrarily selected from the set
of available routes A0, at time instant S0 = 0. Consequently,



the corresponding delivery time is D0 = Y0, where Y0 = Tk ∼
Qk.

D. Age of Information

The Age of Information (AoI) is the metric of our interest
to measure the freshness of information. This metric is defined
as the time elapsed since the generation of the most recently
received data sample [2]. Specifically, the AoI ∆(t) at time t
is defined by2

∆(t) ≜ t− Si, if Di ≤ t < Di+1. (1)

The AoI ∆(t) is a stochastic process that increases linearly
over time and experiences downward jumps to the most recent
delay value Yi upon the delivery of the i-th data sample at time
Di, as illustrated in Fig. 2. The value of ∆(t) between the time
instants S0 = 0 and D0 is assumed to increase linearly, starting
from an arbitrary finite initial real value ∆(0) = ∆0 <∞.

III. PROBLEM FORMULATION

We aim at minimizing the long-term average AoI by
designing a joint sampling and routing policy π ≜
(R0, Z0, R1, Z1 . . . ). This policy consists of two distinct se-
quences: (i) a sequence of routing decisions (R0, R1, R2, . . . ),
where Ri specifies the route selected for transmitting the
(i + 1)-th packet, and (ii) a sequence of finite waiting times
(Z0, Z1, Z2, . . . ), where Zi < ∞ determines the (i + 1)-th
sampling (or submission) time as Si+1 = Di + Zi. Let Π
denote the set of all causal and stationary policies π. The
corresponding optimization problem is then formulated as
follows:

Problem 1 (Average Age Minimization with Energy Con-
straint).

λ⋆ = min
π∈Π

lim sup
T→∞

E

[
1

T

∫ T

0

∆(t) dt

]

s.t. lim sup
T→∞

E

[
1

T

(∫ T

0

gt(R(t)) dt+ Cs Ns(T )

)]
≤ Emax,

(2)

where R(t) denotes the transmission route at time t (with
gt(R(t)) = 0 if idle), Ns(T ) is the number of sampling actions
up to time T , and λ⋆ is the optimal long-term average AoI.

A. Lagrangian Techniques

The AoI process ∆(t) is inherently a piecewise linear
function as defined by equation (1). Hence, it is natural to
rewrite Problem 1 as an average sum over the renewal intervals
[Di, Di+1) corresponding to consecutive successful updates.

2The framework in this work can be readily extended to general AoI penalty
functions g(∆(t)) as alternative metrics of interest, where g(·) : R+ → R+

represents any monotonically non-decreasing function. However, due to page
limits, we focus on the linear case in this paper.

Fig. 2. Sample evolution of the AoI process ∆(t).

The long-term time average in (2) can be expressed as

lim sup
T→∞

E

[
1

T

∫ T

0

∆(t) dt

]
=

lim sup
n→∞

E
[∑n−1

i=0 q(Yi, Yi+1, Zi)
]

E
[∑n−1

i=0 (Zi + Yi+1)
] ,

(3)

where q(Yi, Yi+1, Zi) represents the accumulated AoI (the area
under ∆(t)) during the i-th cycle.

Similarly, the average energy consumption in the constraint
of Problem 1 can be rewritten in terms of discrete renewal
cycles. During each cycle, the transmitter may expend energy
both through transmission and sampling operations. Specifi-
cally, the expected total energy consumed up to the n-th update
can be written as

E

[
n−1∑
i=0

(
gt(Ri)Yi+1 + Cs

)]
. (4)

Normalizing both the objective and the constraint by the ex-
pected cycle duration E

[∑n−1
i=0 (Zi + Yi+1)

]
, the continuous-

time Problem 1 can thus be reformulated in discrete form as

λ⋆ ≜ min
π

lim sup
n→∞

E
[∑n−1

i=0 q(Yi, Yi+1, Zi)
]

E
[∑n−1

i=0 (Zi + Yi+1)
]

s.t. lim sup
n→∞

E
[∑n−1

i=0

(
gt(Ri)Yi+1 + Cs

)]
E
[∑n−1

i=0 (Zi + Yi+1)
] ≤ Emax.

(5)

The problem in equation (5) is an infinite-horizon Con-
strained Semi-Markov Decision Process (CSMDP) with a
hybrid state space and a state-dependent hybrid action space,
making it particularly challenging to solve due to the fractional
structure of its objective and the additional long-term energy
constraint. To address this, we adopt a three-step approach.

Since the denominator in (5) is strictly positive, the
constraint in (5) can be equivalently written as

lim sup
n→∞

(
E
[∑n−1

i=0

(
gt(Ri)Yi+1 + Cs

)]
− Emax E

[∑n−1
i=0 (Zi + Yi+1)

])
≤ 0.

(6)



B. Dinkelbach’s Reformulation
The objective in Problem (5) is a nonlinear fractional

function of the policy π. To eliminate this fractional struc-
ture, we apply Dinkelbach’s method for nonlinear fractional
programming. For a given λ ≥ 0, we define the auxiliary
function

Problem 2 (Dinkelbach’s Reformulation).

h(λ) ≜ min
π∈Π

lim sup
n→∞

1

n

n−1∑
i=0

E
[
q(Yi, Yi+1, Zi)

− λ(Zi + Yi+1)
]
.

(7)

The function h(λ) measures the difference between the
expected accumulated AoI cost and the weighted accumulated
epoch duration. As established by Dinkelbach’s theorem, there
exists a unique λ⋆ such that

h(λ⋆) = 0,

and the policy attaining this zero point yields the optimal long-
term average AoI. Thus, the unconstrained problem can be
solved iteratively by updating λ until h(λ) = 0.

C. Lagrangian Formulation for the Energy-Constrained Case
When the average energy constraint in (6) is imposed, the

corresponding Dinkelbach function becomes

h(λ, c) ≜ min
π∈Π

lim sup
n→∞

1

n

n−1∑
i=0

E
[
q(Yi, Yi+1, Zi)

− λ(Zi + Yi+1)

− c
(
Emax(Zi + Yi+1)

− gt(Ri)Yi+1 − Cs

)]
,

(8)

where the nonnegative Lagrange multiplier c ≥ 0 penalizes
violations of the long-term average energy constraint.

The above formulation can be interpreted as the Lagrangian
relaxation of the constrained problem:

L(c, λ) = min
π

lim sup
n→∞

1

n

n−1∑
i=0

E
[
q(Yi, Yi+1, Zi)

− λ(Zi + Yi+1)

− c
(
Emax(Zi + Yi+1)

− gt(Ri)Yi+1 − Cs

)]
.

(9)

For a fixed c, solving h(λ, c) = 0 yields the conditionally
optimal long-term average AoI λ⋆

c . Let E(λ⋆
c , c) denote the

corresponding average energy consumption. Since E(λ⋆
c , c)

is monotonically decreasing in c by complementary slack-
ness [26], the optimal Lagrange multiplier is obtained as

c⋆ = inf{ c > 0 : E(λ⋆
c , c) ≤ Emax }. (10)

At (λ⋆, c⋆), both the average AoI and energy constraint are
simultaneously optimal, satisfying h(λ⋆, c⋆) = 0.

The following lemma establishes the relationship between
h(λ, c) and the conditionally optimal long-term average AoI

λ⋆(c) in the energy-constrained case.

Lemma 1. For any fixed c ≥ 0, the following assertions hold:
1) λ⋆(c) ⋛ λ if and only if h(λ, c) ⋛ 0.
2) If h(λ, c) = 0, the solutions to the constrained prob-

lem (5) and Problem 2 coincide for the corresponding
multiplier c.

Proof. See Appendix A. ■

According to Lemma 1, the solution to the energy-
constrained problem in equation (5) can be obtained by
identifying the value of λ for which h(λ, c) = 0 for a given
multiplier c, and then optimizing over c. The root of the
function h(λ, c) thus corresponds to the optimal long-term
average age λ⋆ under the average energy constraint, and the
pair (λ⋆, c⋆) jointly characterizes the optimal policy π⋆.

D. Average-Cost MDP for a Given λ

In the third step, we show that Problem 2 can be formulated
as an average-cost Markov Decision Process (MDP) for a fixed
value of λ, described by the quadruple

M (λ) ≜ (S,A,P, C).

Each component of this MDP is defined as follows.
• State Space S = [0,∞)× {0, 1}N : At each decision

epoch i, the system occupies a state

(Yi,Li) ∈ S,

where the continuous component Yi = y < ∞ denotes
the delay observed in the previous transmission, and

Li = (l1,i, l2,i, . . . , lN,i) ∈ {0, 1}N

encodes the availability of the N routes at epoch i.
Specifically,

lk,i =

{
0, if route k is available at time i,

1, otherwise.

The set S itself is time-invariant (homogeneous), al-
though the realization Li evolves over time according to
fixed underlying statistics.

• Action Space A(Li): Given the current availability vector
Li, the decision maker selects an action (Ri, Zi), where

– Ri denotes the chosen route for transmission, and
– Zi ≥ 0 represents the waiting time before generating

the next update.
The set of admissible actions depends on Li:

A(Li) = {(r, z) : r ∈ {k | lk,i = 0}, z ∈ R+}.

The global action space is the union of all state-dependent
sets:

A =
⋃

L∈{0,1}N

A(L).

We assume S and {A(L)} are time-homogeneous, mean-
ing they do not explicitly depend on the decision epoch i;
only the realized state Li varies stochastically over time.



• State Transition Probability P : S ×A×B(S)→ [0, 1]:
Let B(S) denote the Borel σ-algebra generated by the
measurable subsets of S = [0,∞) × {0, 1}N . For any
current state (y, l) ∈ S , admissible action (r, z) ∈ A(l),
and measurable set C ∈ B(S), the transition kernel is
defined as P

(
C | y, l, r, z

)
= P

(
(Yi+1,Li+1) ∈ C |

Yi = y,Li = l, Ri = r, Zi = z
)
. We assume that,

conditioned on the current state and action, the next
delay Yi+1 and the next availability vector Li+1 are
conditionally independent. That is, P

(
Yi+1,Li+1 | Yi =

y,Li = l, Ri = r, Zi = z
)
= P (Yi+1 | Ri = r)P (Li+1),

meaning that the delay distribution depends only on the
chosen route r, while the availability process evolves
independently of the previous state or action. Hence, for
any measurable set C ⊆ S,

P
(
C | y, l, r, z

)
=∑

l′∈{0,1}N

P (Li+1 = l′)

∫
CY (l′)

Qr(y
′)dy′,

where CY (l
′) := y′ ≥ 0 : (y′, l′) ∈ C. The availability

process Li is independent across epochs and identically
distributed with stationary distribution

P (Li+1 = l′) =

N∏
k=1

p
1−l′k
k (1− pk)

l′k .

• Cost Function C : S ×A → R: The one-step cost in-
curred when the system is in state (y, l) and action (r, z)
is taken is denoted by g(y, l, z, r;λ), defined as

g(y, l, z, r;λ) =EQr

[
(2y + Yi+1 + z)(Yi+1 + z)

2

]
− λz − λEQr [Yi+1].

By substituting µr = EQr [Yi+1] and σ2
r = VarQr [Yi+1],

this simplifies to

g(y, l, z, r;λ) =
z2

2
+(y+µr−λ) z+(y−λ)µr+

µ2
r + σ2

r

2
.

(11)

Using Lemma 1 and the constructed MDP M (λ) for a fixed
λ, we can design a nested three-layer optimization algorithm
(e.g., [9], [15]) to solve the CMDP in Problem (1). The details
of this numerical solution are presented in Section V.

IV. MAIN RESULTS

Before presenting the numerical solution to Problem 1, we
first establish several structural results regarding the jointly
optimal sampling and routing policies.

A. Structural Results of Optimal Policies

The following Theorem 1 establishes the piecewise-
threshold structure of the jointly optimal sampling and routing
policies.

Theorem 1. For an N -route problem where the mean delay
of each route satisfies µ1 ≥ µ2 ≥ · · · ≥ µN and the delay
distribution of each route has infinite support, the jointly

optimal sampling and routing policies exhibit the following
threshold structure:

1) Optimal Routing: The optimal routing action at the i-
th epoch, denoted by R⋆

i , is a monotonic non-decreasing
step function of the observed delay Yi, and can be deter-
mined by K ≤ |Ri|−1 positive thresholds 0 < τ1(li) <
τ2(li) · · · < τK(li) and K + 1 monotonic increasing
index values a1(li) < a2(li) < · · · < aK+1(li) ∈ Ri:

R⋆
i =

K+1∑
k=1

(
ak(li)− ak−1(li)

)
u
(
Yi − τk−1(li)

)
, (12)

where τ0(li) ≜ 0, a0(li) ≜ 0, and u(t) is the unit step
function:

u(t) ≜

{
0, t < 0

1, t ≥ 0.
(13)

Furthermore, the number of unique thresholds is upper
bounded by N(N−1)

2 .
2) Optimal Sampling: The optimal waiting time at the i-th

epoch, denoted by Z⋆
i , follows a water-filling structure

and can be determined by K + 1 thresholds β⋆
1(li) <

β⋆
2(li) < · · · < β⋆

K+1(li) with β⋆
k(li) = λ⋆ − µak(li),

Z⋆
i =



(
β⋆
1(li)− Yi

)+
, 0 ≤ Yi < τ1(li)

...
...(

β⋆
K(li)− Yi

)+
, τK−1(li) ≤ Yi < τK(li)(

β⋆
K+1(li)− Yi

)+
, τK(li) ≤ Yi

,

(14)
or equivalently,

Z⋆
i = (λ⋆ + c⋆Emax − µR⋆

i
− Yi)

+. (15)

where λ⋆ is the optimal average AoI defined in Problem
1, and (·)+ is defined as (·)+ ≜ max{0, ·}.

Proof Sketch. With the MDP M (λ) (11), we can establish the
Average-Cost Optimality Equation (ACOE) [27, Eq. 4.1]:

V ∗(y, l;λ, c) + h(λ, c) = min
z, r∈R

{
g(y, l, z, r;λ, c)

+ EQr,p

[
V ∗(Yi+1,Ri+1;λ, c)

]}
,

(16)
where R = { k | lk = 0 }, V ∗(y, l;λ, c) is the relative value
function, and h(λ, c) is the optimal value of the reformulated
MDP in Problem 2. Given any λ, c and route r ∈ N , we
first prove that the optimal waiting time that solves the right
hand-side of (16) follows a water-filling structure, given by:

z⋆(y, l; r, λ, c) = (λ+ cEmax − µr − y)+. (17)

As h(λ⋆
c , c) = 0 for the conditionally optimal λ⋆

c for any c,
applying λ = λ⋆

c in (16) and (17) yields:

V ∗(y, l;λ⋆
c , c) = min

r∈R
{g(y, l, z⋆(y, l; r, λ⋆

c , c), r;λ
⋆
c , c)

+ EQr,p

[
V ∗(Yi+1,Ri+1;λ

⋆
c , c)

]
}.
(18)
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Fig. 3. Visualization of the jointly optimal policies.

For short-hand notations, we define the action-value function
as:

Q(y, l, r) ≜g
(
y, l, z⋆(y; r, λ⋆

c , c), r;λ
⋆
c , c
)

+ EQr,p

[
V ∗(Yi+1,Ri+1;λ

⋆
c , c)

]
,

(19)

and the optimal routing policy r⋆(y, l) turns to

r⋆(y, l) = argmin
r∈R
{Q(y, l, r)}. (20)

Then, we analyze a series of properties of the function
Q(y, l, r) and prove that r⋆(y, l) is a non-decreasing step
function, thus accomplishing the proof. See Section VI for
the detailed proof. ■

We have established that the AoI-optimal routing policy
follows a threshold-based structure. However, one can argue
that these thresholds never actually exist and that the optimal
policy always uses a single route. To counter this, we show
that there exist system configurations where these thresholds
must exist.

The following Lemma 2 demonstrates an important relation-
ship between the sampling threshold β⋆

k(li) and the routing
threshold τk(li).

Lemma 2. The following assertion holds true:

β⋆
k(li) < τk(li) k ≤ K. (21)

Proof. See Appendix A. ■

Consequently, for any interval Yi ∈ [τk−1(li), τk(li) asso-
ciated with a constant optimal routing option ak(li), there
exists a corresponding sub-interval

[
β⋆
k(li), τk(li)

)
in which

a zero-waiting policy, defined by Z⋆
i =

(
β⋆
k(li) − Yi

)+
= 0,

is optimal. An example sketch for the structure of the jointly
optimal sampling and routing policy is depicted in Fig. 3. The
threshold-based structure derived in this subsection enables
highly efficient deployment in complex networks. Terminals
can maximize information freshness simply by storing and
applying the derived thresholds. In Section V, we present a
series of algorithms to compute these thresholds efficiently.

B. Bounds on the Optimal Average AoI

In this subsection, we establish the upper and lower bounds
on the optimal average age λ⋆. These bounds will later serve
as initialization points for the bisection search described in
Section V.

Lemma 3. λ⋆ is upper and lower bounded by:

0 ≤ λ⋆ ≤ 3µ1

2
+

σ2
1

2µ1
. (22)

Proof. See Appendix A. ■

V. NUMERICAL SOLUTIONS

In this section, we develop numerical algorithms to solve the
energy-constrained Average Age Minimization problem in (1)
and determine the thresholds introduced in Theorem 1. By
leveraging the Lagrangian relaxation and Dinkelbach’s method
introduced in Section III, the problem can be reformulated as
a two-layer nested structure.

In the inner layer, for a fixed pair (λ, c), we approximate the
auxiliary function h(λ, c) defined in (7) through the Average
Cost Optimality Equation (ACOE) (16). In the outer layer,
we update (λ, c) iteratively until the Dinkelbach equilibrium
h(λ⋆, c⋆) = 0 and the energy constraint are simultaneously
satisfied.

A. Challenges in Approximating h(λ, c)

1) Challenge 1: Hybrid Action Space
The first challenge in computing h(λ, c) arises from the

hybrid nature of the action space, where sampling actions
z ∈ R+ are continuous, while routing actions r ∈ R are
discrete and depend on the current route availability. By
leveraging (17), which gives the optimal sampling policy

z⋆(y, l, r;λ, c) = (λ+ cEmax − µr − y)+,

we substitute z⋆(·) into the ACOE (16). This transformation
yields a simplified SMDP with a countable routing action
space:

V ∗(y, l;λ, c) + h(λ, c) = min
r∈R

{
g(y, l, z⋆(y;λ, c), r;λ, c)

+ EQr,p[V
∗(Yi+1,Ri+1;λ, c) ]

}
.

(23)
This effectively decouples the continuous and discrete compo-
nents of the hybrid action space, reducing the dimensionality
of the optimization.

2) Challenge 2: Uncountable State Space
The second challenge stems from the uncountable nature of

the continuous state variable y ∈ R+. Evaluating (23) over the
entire state space is computationally intractable. Traditional
discretization methods approximate S by a finite grid of
M points {y1, . . . , yM}, introducing a quantization error ϵM
that vanishes asymptotically but increases computational cost
quadratically with M . The overall complexity of the Relative
Value Iteration (RVI) approach scales as O(NM2), where
N = |R|.



B. Proposed REAVI Algorithm with Energy Constraint

To overcome the trade-off between accuracy and compu-
tational cost, we extend the Relative Expected Action Value
Iteration (REAVI) algorithm to handle the Lagrangian form of
the constrained problem. Define the relative value function

W ∗(y, l;λ, c) ≜ V ∗(y, l;λ, c)− V ∗(0, l;λ, c), (24)

where W ∗(0, A;λ, c) = 0. Substituting (24) into (23) gives

W ∗(y, l;λ, c) + h(λ, c) =

min
r∈R

{
g(y, l, z⋆(y; r, λ, c), r;λ, c)+

EQr,p[W
∗(Yi+1,Ri+1;λ, c) ]

}
,

(25)

where h(λ, c) is obtained by evaluating (25) at y = 0.

We define the Relative Expected Action Value (REAV)
function as

G(r;λ, c) ≜ EQr,p

[
W ∗(Yi+1,Ri+1;λ, c)

]
, r ∈ R. (26)

This converts the uncountable state space R+ into a fixed-point
problem over the finite route set R.

Taking the expectation over the random variables (Y,R)
yields the Relative Expected Action Value Optimality Equation
(REAVOE):

G(q;λ, c) + h(λ, c) = EY∼Qq
Ep[

min
r∈R

{
g(Y,L, z⋆(Y ; r, λ, c), r;λ, c) +G(r;λ, c)

}]
,

(27)

with

h(λ, c)

= Ep

[
min
r∈R

{
g(0,L, z⋆(0; r, λ, c), r;λ, c) +G(r;λ, c)

}]
.

(28)

Algorithmic Solution: The resulting REAVI algorithm iter-
atively updates {G(r;λ, c)}r∈R and h(λ, c) until convergence.
In the first outer loop, the Dinkelbach update for λ is done via
bisection search for a fixed c. In the outermost loop a bisection
search for c⋆ is done to enforce the energy constraint.

C. Policy and Energy Evaluation

Given (λ, c) and a solution {G(r;λ, c)}, the one-step route
selection is

r⋆(y, l;λ, c) ∈ argmin
r∈R

{
g(y, l, z⋆(y; r, λ, c), r;λ, c)

+G(r;λ, c)
}
.

(29)

The corresponding long-run average energy of this stationary
policy is

E(λ, c) = lim sup
n→∞

E

[
n−1∑
i=0

(
gt(Ri)Yi+1 + Cs

)]

E

[
n−1∑
i=0

(
z⋆(Yi+1;Ri, λ, c) + Yi+1

)] .
(30)

Algorithm 1: Energy-Constrained ReaVI with Nested
Bisection on (λ, c) and Embedded Threshold Extrac-
tion

Input: Bounds c− = 0, c+ > 0; tolerances
ϵλ, ϵc, ϵfp > 0

1 while c+ − c− > ϵc do

2 Outer bisection on c: c← c− + c+

2
3 Inner bisection on λ (Dinkelbach root):

choose λ− < λ+;
4 while λ+ − λ− > ϵλ do

5 λ← λ− + λ+

2
6 REAV fixed-point for given (λ, c):

initialize G(r)←0 for all r and

h← Ep

[
min
r∈R
{g(0, l, z⋆(0; r, λ, c), r;λ, c)+G(r)}

]
.

repeat
7 hold ← h
8 for q ∈ R do
9

G(q)← −hold + EY∼Qq
Ep[

min
r∈R
{g(Y,L, z⋆(Y ; r, λ, c), r;λ, c)

+G(r)}
]
.

10

h←Ep

[
min
r∈R
{g(0, l, z⋆(0; r, λ, c), r;λ, c)

+G(r)}
]
.

11 until
∣∣h− hold

∣∣ < ϵfp;
12 Evaluate the Dinkelbach sign: use

h(λ, c) = h;
13 if h(λ, c) > 0 then λ− ← λ;
14 else λ+ ← λ;

15 Fix λ as mid-point root: λ← λ− + λ+

2
.

16 Define policy: r⋆(y,A) via (29).
17 Energy check: compute E(λ, c) by (30).
18 if E(λ, c) ≥ Emax then c− ← c;
19 else c+ ← c;

20 Mixing to hit the boundary: with c− < c+, compute

q ← Emax − Ē(λ, c−)

Ē(λ, c+)− Ē(λ, c−)
∈ [0, 1],

and randomize between the two stationary policies.
Output: (λ⋆, c⋆), h(λ⋆, c⋆) = 0, and

{G(r;λ⋆, c⋆)}r∈R.



VI. PROOF OF OPTIMAL THRESHOLD STRUCTURES

For short-hand notations, we define Q(y, l, z, r;λ, c) as the
state-action function in the right-hand side of (18):

Q(y, l, z, r;λ, c) ≜g(y, l, z, r;λ, c)

+ EQr,p[V
∗(Yi+1,Ri+1;λ, c)].

(31)

Given a specific route r for Q(y, l, z, r;λ, c), we first solve
the conditionally optimal z⋆(y, l; r, λ, c).

• Case 1: If λ+ cEmax − µr − y ≤ 0, we have that

∂Q(y, l, z, r;λ, c)

∂z
= z + y + µr − λ− cEmax ≥ 0.

(32)
In this case, Q(y, l, z, r;λ, c) is monotonically increasing
with z given a specific r and y, which indicates that
z⋆(y, l; r, λ, c) = 0.

• Case 2: If λ + cEmax − µr − y > 0, from (32) we
can establish that if z ∈ (0, λ + cEmax − µr − y),
Q(y, l, z, r;λ, c) is monotonically decreasing with z; if
z ∈ [λ+ cEmax−µr − y,∞), Q(y, l, z, r;λ, c) is mono-
tonically increasing with z. As a result, z⋆(y, l; r, λ, c) =
z⋆(y; r, λ, c) = λ+ cEmax − µr − y.

Combining the aforementioned two cases yields:

z⋆(y; r, λ, c) = (λ+ cEmax − µr − y)+. (33)

Substituting (33) into (31) and setting λ = λ⋆ yields a compact
form of Q(y, l, r), whose definition has been given in (19):

Q(y, l, r) =− ((λ⋆ + cEmax − µr − y)+)
2

2
+ (y + gt(r)c− cEmax − λ⋆)µr + cCs

+
σ2
r + µ2

r

2
+ EQr,p

[
V ∗(Yi+1,Ri+1;λ

⋆)
]
.

(34)

With the notation Q(y, l, r), the ACOE turns to:

V ∗(y, l;λ⋆, c) = min
r∈R
{Q(y, l, r)}, y ∈ R+. (35)

Meanwhile, the optimal routing policy is given by:

r⋆(y, l) = argmin
r∈R
{Q(y, l, r)}. (36)

To analyze the threshold structure of r⋆(y, l), the following
lemmas discuss some important properties of Q(y, l, r) and
V ∗(y, l;λ⋆, c).

Lemma 4. The action-value function Q(y, l, r) is independent
of the state l, i.e

Q(y, l, r) = Q(y, r), ∀R. (37)

Hence,
V ∗(y, l;λ⋆, c) = min

r∈R
{Q(y, r)}. (38)

Proof. Even though V ∗(y, l;λ⋆) depends on l, once route r
has been selected, the term EQr,p

[
V ∗(Yi+1,Ri+1;λ

⋆, c)
]

in
the right-hand side of (34) is independent of l. This is because
l and li+1 are independent. This completes the proof. ■

Lemma 5. The following assertions hold true:

1) ∀r ∈ N , Q(y, r) is monotonically increasing with y.
2) For a given l, V ∗(y, l;λ⋆, c) is monotonically increas-

ing with y.
3) For any routes j, k such that µj > µk, we have

∂Q(y, j)

∂y
≥ ∂Q(y, k)

∂y
,∀y ∈ R+. (39)

Proof. See Appendix A. ■

With (1) and (3) of Lemma 5 in hand, we can then establish
the following lemma, which indicates that the optimal routing
policy r⋆(y, l) is monotonically non-decreasing with y:

Lemma 6. Consider N routes with their mean delays satis-
fying µ1 ≥ µ2 · · · ≥ µN , if route j is optimal at y = y⋆,R,
we have that

r⋆(y, l) = argmin
r∈R
{Q(y, r)} ≥ j, if y > y⋆,

r⋆(y, l) = argmin
r∈R
{Q(y, r)} ≤ j, if y < y⋆.

(40)

Proof. See Appendix A ■

As Lemma 6 holds for ∀y,∀l and y⋆, r⋆(y, l) is a monoton-
ically non-decreasing function with respect to y. As r⋆(y, l)
belongs to a discrete set R, it forms a non-decreasing step
function as shown in (12). Substituting the step function
r⋆(y, l) into (33) yields:

z⋆(y) = z⋆(y; r⋆(y), λ⋆, c) = (λ⋆ + cEmax − µr⋆(y,l) − y)+.
(41)

For a given constant-value interval
[
τk−1(l), τk(l)

)
where

r⋆(y, l) = ak(l), the optimal sampling policy is defined as:

z⋆(y) = (λ⋆ + cEmax − µak(l) − y)+. (42)

Defining β⋆
k(l) ≜ λ⋆ − µak(l), we next prove that the water-

filling levels β⋆
k(l) are strictly increasing with the index k.

First, we can show that for any i < j, it follows that µai(l) ≤
µaj(l), which leads to

β⋆
i (l) = (λ⋆ + cEmax − µai(l))

+ ≤ (λ⋆ + cEmax − µaj(l))
+

= β⋆
j (l).

(43)
Next, we prove that β⋆

i (l) ̸= β⋆
j (l) for i ̸= j. This is achieved

by the following lemma, which indicates that µai(l) ̸= µaj(l)

for i ̸= j.

Lemma 7. Let R⋆ =
{
a1(l), . . . , aK+1(l)

}
denote the set of

routes used by the age-optimal policy for a given l and let Gµ
be defined as

Gµ ≜ {r ∈ R : µr = µ}. (44)

Then, at most one route from Gµ can belong to the optimal
set R⋆:

|R⋆ ∩ Gµ| ≤ 1,∀µ ∈ R+. (45)

Proof. See Appendix A. ■

With lemma 7 and (43), we establish that β1(l)
⋆ < · · · <

β⋆
K+1(l).



Finally, we prove that there are at most N(N−1)
2 unique

routing thresholds. For a < b, we define τa,b as where the
equality Q(τa,b, a) = Q(τa,b, b) is satisfied. By Lemma 6, τa,b
exists if and only if Q(0, b) ≤ Q(0, a). Then, if the inequality

Q(0, 1) ≤ Q(0, 2) ≤ · · · ≤ Q(0, N) (46)

is satisfied, τa,b exists ∀a, b ∈ N , a ̸= b. Hence, there are
at most

(
N
2

)
= N(N−1)

2 unique routing thresholds. Note that
the existence of τa,b does not necessitate its presence in the
optimal solution.

VII. SPECIAL CASE: p = 1, Emax =∞
This section focuses on the case where all routes are always

available, i.e p = 1, and there is no energy constraint upon
the system. Since all routes are available at each interval,
availability is no longer a part of the state space. At each
decision instance a route is picked from the set N instead of
Ri since Ri = N ,∀i. A detailed analysis of this problem
is given in Here, we present the differences of the optimal
solution from problem 1.

Since Ri = N , ∀i, the maximum number of routing thresh-
olds is reduced to N − 1. However, due to the independence
of the waiting time to the availability probabilities p, the
maximum number of waiting thresholds is again given by N .

The optimal routing action at the i-th epoch is given by

R⋆
i =

K+1∑
k=1

(ak − ak−1)u(Yi − τk−1), (47)

where K ≤ N − 1, τ0 ≜ 0, a0 ≜ 0, and u(t) is the unit step
function.

The optimal waiting time at the i-th epoch has a modified
expression where the energy constraint is removed from(15)
and is given by

Z⋆
i =

(
λ⋆ − µR⋆

i
− Yi

)+
. (48)

Lemma 2 turns into

β⋆
k < τk. (49)

The upper bound to λ⋆ can be updated as mini

{
3µi

2 +
σ2
i

2µi

}
since all routes are available at all times.

VIII. SIMULATION RESULTS

This section presents simulation results for practical sce-
narios to validate the analytical findings and evaluate the
performance of our proposed algorithm.

A. Comparing Benchmarks
In this subsection, we refer to our designed jointly optimal

sampling and routing policy as the “optimal policy” and
evaluate its performance against the following benchmark
policies:
• Minimum Average Delay Routing with AoI-Optimal Sam-
pling (MAD-Optimal): This policy always selects the route
with the minimum average delay over the set of available
routes at each instance. Given this selection, a modified version
of the ReAVI with the minimization over the routing options

removed is implemented to find the AoI-optimal waiting
strategy and minimize the long-term average AoI.
• Minimum Average Delay Routing with Zero-Wait Sampling
(MAD-Zero Wait): This policy always selects the route with
the minimum average delay over the set of available routes at
each instance. It is combined with a zero-wait strategy, where
a new packet is sampled and transmitted immediately upon
the delivery of the previous packet3. The long term average
AoI achieved by this policy can be analytically calculated.

Lemma 8. For a system with N routes satisfying µ1 ≥ µ2 ≥
· · · ≥ µN , MAD-ZW policy given by:

πMAD-ZW(y, l) ≜ (r = maxA, z = 0), (50)

achieves a long-term average AoI given by:

λMAD-ZW =

N∑
i=1

piµi

N∏
k=i+1

(1− pk)

+

∑N
i=1 piµi

(
µi

2 +
σ2
i

2µi

)∏N
k=i+1(1− pk)∑N

i=1 piµi

∏N
k=i+1(1− pk)

.

(51)

Proof. See Appendix A. ■

This policy can be undesirable over simpler policies like
route k-Zero Wait. Following is an analysis where N = 3 and
p = [1, p, p].

a) MAD-Zero Wait vs. route 1-Zero Wait
The analytical expression for λMAD−ZW can be obtained

from (51) by setting N = 3 and p = [1, p, p]. Then,

λMAD−ZW = A(p) +
B(p)

A(p)
(52)

where

A(p) =
(
1− p2

)
µ1 +

(
p− p2

)
µ2 + pµ3

B(p) =

(
µ1

2
+

σ2
1

2µ1

)(
1− p2

)
µ1

+

(
µ2

2
+

σ2
2

2µ2

)(
p− p2

)
µ2

+

(
µ3

2
+

σ2
3

2µ3

)
pµ3.

(53)

As a result, if the first derivative of λMAD−ZW with respect
to p, given by:

d

dp
λMAD−ZW = A′(p) +

B′(p)A(p)−B(p)A′(p)

A(p)2
, (54)

satisfies d
dpλ

MAD−ZW > 0 for p ∈ [0, 1], then the MAD-Zero
Wait age will increase with p. In such cases, route 1-Zero Wait
policy will outperform the MAD-Zero Wait.
• Minimum Delay Variance Routing with Zero-Wait Sampling
(MDV-Zero Wait): This policy consistently selects the route
with the lowest delay variance. It is combined with a zero-wait
strategy.

3Zero-wait policy [19] is work-conserving, hence, it achieves maximum
throughput on any given route.



Fig. 4. Simulation results of systems with N = 3 and competitive route 1.

• Minimum Delay Variance Routing with AoI-Optimal Sam-
pling (MDV-Optimal): This policy always selects the route
with the minimum delay variance and follows the AoI-optimal
waiting strategy as outlined in [19, Theorem 4].

B. Satellite-Terrestrial Integrated Routes
We consider two distinct classes of routes, denoted by

NSat and NTer. Here, NSat represents the set of Low Earth
Orbit (LEO) Satellite routes with stochastic delays, while NTer
represents the set of terrestrial routes with stochastic delays.

1) LEO Satellite Routes with Stochastic Delays
For l ∈ NSat, the delay is modeled by a log-normal

distribution, characterized by the following probability density
function [28]:

PY∼Ql
(y) =

1

yβl

√
2π

exp

(
− (ln y − αl)

2

2β2
l

)
, l ∈ NSat,

(55)
where αl and βl correspond to the mean and standard deviation
of the underlying normal distribution.

The mean µl and the variance σ2
l of Y ∼ Ql are given by:

µl = exp(αl +
β2
l

2
), l ∈ NSat (56a)

σ2
l = (exp(β2

l )− 1) exp(2αl + β2
l ), l ∈ NSat. (56b)

2) Terrestrial Routes with Stochastic Delays
If l ∈ NTer, we leverage the gamma distribution to simulate

the statistics of delay y, where the probability density function
is given by [28]:

PY∼Ql
(y) =

1

Γ(θl)γlθl
yθl−1e−y/γl , l ∈ NTer. (57)

The mean µl and the variance σ2
l of Y ∼ Ql are given by:

µl = θlγl, and σ2
l = θlγ

2
l , l ∈ NTer. (58)

C. Parameter Settings
We first consider a scenario where there are 2 available

routes that are always available with the varied energy con-
straint Emax ∈ [1, 13]. The routes has the delay statistics: Log-
normal distribution, µ1 = 5, σ1 = 1.4; Gamma distribution,

Fig. 5. AoI vs. Emax

Fig. 6. Simulation results of systems with N = 3 and uncompetitive route
1.

µ1 = 5, σ1 = 4. Route dependent transmission costs are given
by: gt(1) = 9, gt(2) = 13, and the sampling cost is Cs = 2.

We then consider two different scenarios with no energy
constraint. First of which is a scenario with three available
routes where N = {1, 2, 3}, and two different availability
settings. The parameter setting for the simulations where all

TABLE I
SIMULATION PARAMETERS p = 1, Emax = ∞

Route Route 1 Route 2 Route 3

Distribution Log-normal Gamma Gamma
Parameters (µ1, σ1) (µ2, σ2) (µ3, σ3)

Fig. 7 (a) (3.4, [0, 3]) (0.7, 5) —
Fig. 7 (b) ([0.7, 5.2], 2) (0.7, 5) —
Fig. 7 (c) (2.4, [0, 3]) (1.2, 3) (0.7, 3.4)
Fig. 7 (d) (2.4, 0.7) (1.2, 3) ([0.7, 1.2], 3.4)

Fig. 8 (2.4, 0.7) (1.2, 3) (0.7, 3.4)
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Fig. 7. Simulation results of systems with N = 2 and N = 3.

TABLE II
SIMULATION PARAMETERS Emax = ∞

Route Route 1 Route 2 Route 3

Parameters (Q1, µ1, σ1, p1) (Q2, µ2, σ2, p2) (Q3, µ3, σ3, p3)

Fig. 4, Emax =∞ (Gamma, 6, 2, 1) (Log-normal, 5, 4, p) (Gamma, 3, 7, p)
Fig. 6, Emax =∞ (Gamma, 10, 8, 1) (Log-normal, 4, 4, p) (Log-normal, 3, 6, p)

routes are always ON (p = 1) is presented in Table I. In
this table, parameters specified as intervals indicate the values
that are varied along the horizontal axis of the corresponding
simulation figure. For notational convenience, we define:

σmin = min
r∈N

σr, µmin = min
r∈N

µr, µmax = max
r∈N

µr. (59)

The parameter setting for the simulations where a single route
(route 1) is always ON is presented in Table II where p2 =
p3 = p is the varying parameter.

D. Discussions
Fig. 5 demonstrates that the long-term average AoI de-

creases as the energy thresholds is loosened. Furthermore,
when Emax exceeds the energy output of the unconstrained
system, the AoI converges to a set value as expected.

Fig. 4 demonstrates that MAD-Zero Wait can underperform
against a simpler policy. When p = 0, MAD-Zero Wait
performs similar to the optimal policy since route 1’s delay
has a small variance in this setting. As p increases, the MAD-
Zero Wait policy uses the other routes, which are not suitable
to zero wait policies, increasingly often. When p = 1, MAD-
Zero Wait policy is equivalent to the route 3-Zero Wait policy.
An analysis showing when we can expect MAD-Zero Wait to
exhibit the behavior in Fig. 4 follows:

Figures 4 and 6 demonstrate that the advantage of using
the optimal policy over the MAD-Optimal policy dwindles
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Fig. 8. Visualization of simulated optimal policies.

in the low availability region (small p). It can also be seen
that the separation between the policies happens for a larger
p when route 1 has worse delay characteristics. As a result, it
may be beneficial to apply the MAD-Optimal policy (smaller
complexity) in cases where route 1 is uncompetitive and routes
2, . . . , N have low joint availability (i.e, when

∏N
2 1 − pi is

large).
Fig. 7(a) highlights a surprising finding: a higher delay

variance may counterintuitively improve the average AoI per-
formance. In a single-route setting, reducing the delay variance
typically leads to more regular update arrivals and thus lower
AoI. However, this intuitive conclusion breaks down when
an additional route is available, as evidenced by Fig. 7(a).
Moreover, the figure shows that when σmin = σ1 is below
a certain threshold (approximately 2.5), the optimal policy
actively utilizes both routes. Once this threshold is crossed,
route 1 is no longer selected, and the route 2 (MAD-Optimal)
with minimum delay is always used.

Fig. 7(b) demonstrates that route 1 (MDV-Optimal) provides
better AoI performance than route 2 (MAD-Optimal) when
µ1 = µmax is relatively small. While route 2 is used in the
optimal policy due to its shorter average delay, its role is
marginal. Notably, the benefit of joint routing peaks when
µmax is just above 3. As µmax continues to increase and
exceeds approximately 4, the route 2 (MAD-Optimal) policy
becomes age-optimal.

Fig. 7(c) presents the long-term average AoI values in a
three-route scenario, where σ1 = σmin is varied from 0 to 3.
The optimal policy utilizes all three routes until σmin exceeds
a threshold of approximately 1.5, beyond which route 1 is
no longer selected, and the policy relies solely on routes 2
and 3.Fig. 7(d) shows the long-term average AoI values for
another three-route scenario, where µ3 = µmin is varied from
0.7 to 1.2. In this case, all three routes consistently appear
in the optimal policy, as route 3 remains the minimum delay
route. However, its contribution to the overall performance
becomes negligible as µ3 = µmin approaches µ2 = 1.2.

Fig. 8(a) and Fig. 8(b) show threshold structure of the op-



timal routing decision R⋆
i = r⋆(y) and waiting time decision

Z⋆
i = z⋆(y) when Yi = y. The parameter configuration is

specified in Table I. These results verify Theorem 1.
Overall, the proposed joint sampling and routing policy

demonstrates robust improvements in AoI performance under
diverse parameter settings. In particular, our simulations show
that even in a basic three-route example, average AoI can
be reduced by as much as 10%. This finding challenges
conventional intuition and reveals a critical insight: routes that
appear suboptimal in isolation—due to higher mean delays or
variances—can meaningfully contribute to AoI minimization
under a well-designed optimized handover policy.

IX. CONCLUSION

In this work, we investigated a multi-route status update
system and proved that a threshold-based joint sampling and
routing policy can minimize the long-term average AoI. We
introduced an efficient algorithm namely Bisec-REAVI to
compute this optimal policy. Our simulations consistently
show improvements in AoI, revealing that higher variance or
mean delays in certain routes can still help minimize AoI when
jointly optimized. This challenges the common intuition that
lower delay variance always leads to better AoI performance
and provides insights into routing design for future TN-NTN
networks.
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APPENDIX

Part 1. We first prove that

λ⋆ ≤ λ⇐⇒ h(λ, c) ≤ 0. (60)

If λ⋆ ≤ λ,

∃ π, lim sup
n→∞

∑n−1
i=0 Eπ[q(Yi, Zi, Yi+1)]∑n−1

i=0 Eπ[Zi + Yi+1]
≤ λ. (61)

Moving λ to the left-hand side yields: ∃ π

lim sup
n→∞

1
n

∑n−1
i=0

(
Eπ

[
q(Yi, Zi, Yi+1)

]
− λ Eπ[Zi + Yi+1]

)
1
n

∑n−1
i=0 Eπ[Zi + Yi+1]

≤ 0.

(62)
Since Yi’s over the same route are independent, the inter-
sampling times T int

i = Yi + Zi are regenerative. Since there
are N routes, the expected period of the most frequently used
route satisfies E[nk+1 − nk] ≤ N , where nk denotes the k-th
epoch a particular route is used. Because T int

i ’s are regenerative
and we have 0 < E[Dnk+1

−Dnk
] <∞, for all k, the renewal

theory [29] tells us that limn→∞
1
n

∑n−1
i=0 E[Zi + Yi+1] exists

and is positive. Thus, there exists a policy π such that the
numerator of the left-hand side (62) is less than zero, which



indicates that the infimum of the numerator in (62) is less than
zero, indicating that h(λ) ≤ 0.

Conversely, if h(λ, c) ≤ 0, as limn→∞
1
n

∑n−1
i=0 E[Zi +

Yi+1] exists and is positive, we can derive (61) and (62), which
indicates that λ⋆ ≤ λ. The corollary λ⋆ > λ⇐⇒ h(λ, c) > 0
can be derived directly from (60) by leveraging Modus Tollens.
Part 2: λ⋆ = λ⇐⇒ h(λ, c) = 0. If h(λ, c) = 0, from part 1
of the proof, we can first establish that λ⋆ ≤ λ. We then show
that the policy π such that h(λ, c) = 0 can lead to

lim sup
n→∞

∑n−1
i=0 Eπ[q(Yi, Zi, Yi+1)]∑n−1

i=0 Eπ[Zi + Yi+1]
= λ, (63)

which indicates that λ ≥ λ⋆. Combining these together, we
can obtain λ = λ⋆. Conversely, if λ = λ⋆, we can establish
from part 1 that h(λ, c) ≤ 0; Meanwhile, the definition of λ⋆

in (5) leads to

∀ π, lim sup
n→∞

n−1∑
i=0

Eπ[q(Yi, Zi, Yi+1)]−λEπ[Zi + Yi+1] ≥ 0,

(64)
which indicates that h(λ, c) ≥ 0. Combining these together,
we establish that h(λ, c) = 0.

Differentiating the action-value function given in (34) with
respect to y, we obtain:

∂Q(y, r)

∂y
=

{
λ⋆ − y, if y < λ⋆ − µr

µr, if y ≥ λ⋆ − µr

(65)

For all y, the derivative is positive. Hence, ∀r ∈ N , Q(y, r) is
monotonically increasing with y. As a result, for any y2 ≥ y1,
we can establish that

V ∗(y2,R;λ⋆)− V ∗(y1,R;λ⋆) = min
r∈R

Q(y2, r)−min
r∈R

Q(y1, r)

≥ min
r∈R
{Q(y2, r)−Q(y1, r)} ≥ 0,

(66)
which indicates that V ∗(y, l;λ⋆) = minr∈R Q(y, r) is mono-
tonically increasing with y.

Since µj > µk, it follows that λ⋆ − µk > λ⋆ − µj . Then,
using (65), we compute the difference:

∂Q(y, j)

∂y
−∂Q(y, k)

∂y
=


0, if y < λ⋆ − µj

µj + y − λ⋆, if λ⋆ − µk > y ≥ λ⋆ − µj

µj − µk, if y ≥ λ⋆ − µk.
(67)

In all cases, the difference is non-negative, thus

∂Q(y, j)

∂y
− ∂Q(y, k)

∂y
≥ 0, (68)

which completes the proof. Since route j is optimal at y =
y⋆, A, we have

Q(y⋆, j) ≤ Q(y⋆, i), (69)

for any i ∈ A. Now, for i < j we know µi ≥ µj . Then,
combining (39) with (69) we obtain

Q(y, j) ≤ Q(y, i), y ≥ y⋆, A, (70)

which proves that no route i < j, i ∈ A can be optimal

for y > y⋆, A. The proof for the converse statement follows
the same logic. As given by (65), the sole dependence of
∂Q(y, i)/∂y on i is µi. Thus, ∀j, k ∈ Gµ, we have

∂Q(y, j)

∂y
=

∂Q(y, k)

∂y
,∀y ∈ R+,∀j, k ∈ Gµ. (71)

Thus, if route i is optimal at y = 0, it is also optimal for every
y ∈ R+:

Q(y, i) = min
r∈Gµ

{Q(y, r}),∀y ∈ R∗, (72)

which indicates that this route dominates the space Gµ. As a
result, only one route from Gµ will be included in R⋆.

We know from Lemma 6 that the optimal route j at y =
τk(li) satisfies µj < µak(li). Then, we have

∂Q(y, j)

∂y
=

∂Q
(
y, lk(li)

)
∂y

= λ⋆ − y, y < β⋆
k(li). (73)

Therefore, τk(li) must be greater than β⋆
k(li).

Consider a policy π = (1, 0, 1, 0, . . .) that selects a single
route 1 (always available) and generates a new sample im-
mediately after the previous update packet is delivered (i.e.,
Zi = 0, ∀i). We denote the long-term average age under
this zero-wait route 1 policy as λzw

1 . This age simplifies to
3µ1

2 +
σ2
1

2µ1
since Yi’s over a single route are i.i.d.

Let λπ denote the average age achieved by a policy π ∈ Π.
By definition of optimality, we have

λ⋆ ≤ λπ, ∀π ∈ Π. (74)

In particular, this implies: λ⋆ ≤ λzw
1 = 3µ1

2 +
σ2
1

2µ1
. Since the

AoI ∆(t) is non-negative, λ⋆ ≥ 0. This completes the proof.

Let us derive the long-term average age achieved by using
route j under the MAD-ZW policy. The expected age over
such intervals can be given by:

λav
j =

E
[
Y Y ′ + (Y ′)2

2

]
E[Y ′]

= E[Y ] +
E[Y ′]

2
+

var(Y ′)

2E[Y ′]
, (75)

where Y denotes the randomized previous delay and Y ′

denotes the delay over route j. Since the availability of routes
are i.i.d over intervals, so is the route selection process of the
MAD-ZW policy. The probability that route k is used under
πMAD−ZW is the probability of the event that route k is ON
and no route l > k, l ≤ N is ON, i.e k = maxR. Therefore,
we can express the E[Y ] term in (75) as:

E[Y ] =

N∑
i=1

piµi

N∏
k=i+1

(1− pk). (76)

Then, combining (75) and (76), the average age attained over
route j can be expressed as:

λav
j =

N∑
i=1

piµi

N∏
k=i+1

(1− pk) +

(
µj

2
+

σ2
j

2µj

)
. (77)

Finally, since we can express the average age attained over



any route, we take the time average over all j:

λMAD−ZW =

N∑
j=1

pjµjλ
av
j

∏N
k=j+1(1− pk)∑N

i=1 piµi

∏N
k=i+1(1− pk)

, (78)

which gives (51).


