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Abstract— In order to facilitate the reliability of data trans-
mission of Spinal codes over the fading channel, performance
analysis of Spinal codes is conducted, and an improved encoding
structure is proposed. First, we derive an approximate frame
error rate (FER) upper bound for Spinal codes over the Rayleigh
fading channel in the finite block length (FBL) regime. Then,
inspired by the FER analysis process, we propose an improved
encoding structure, named self-concatenation structure, to reduce
the FER of Spinal codes. In addition, a parallel structure is
proposed for Spinal codes to improve the decoding throughput.
For the self-concatenation structure, simulation results show that
it exhibits a significant gain in anti-noise performance compared
with the original Spinal codes over the Rayleigh fading channel.
For the parallel structure, we find that by combining the parallel
structure with the self-concatenation structure, not only is the
encoding and decoding throughput of Spinal codes significantly
improved but also the FER of Spinal codes is reduced.

Index Terms— Spinal codes, FER analysis, Rayleigh fading
channel, encoding structure improvement.

I. INTRODUCTION

SPINAL codes are a new kind of capacity-approaching rate-
less code which has attracted extensive research interest

because of its simple coding structure and outstanding rate
performance [1]–[3]. The coding structure of Spinal codes
is very simple. It generates uniformly distributed code words
with pseudo-random characteristics by combining a hash func-
tion with a random number generator (RNG). Its general

Manuscript received December 2, 2020; revised April 5, 2021 and
May 31, 2021; accepted June 12, 2021. Date of publication June 30,
2021; date of current version December 10, 2021. This work was sup-
ported in part by the National Natural Science Foundation of China under
Grant 61871147, Grant 62071141, Grant 61831008, and Grant 61371102; in
part by the Shenzhen Municipal Science and Technology Plan under
Grant GXWD20201230155427003-20200730122528002; and in part by
the Guangdong Science and Technology Planning Project under Grant
2018B030322004. The associate editor coordinating the review of this article
and approving it for publication was G. Fodor. (Corresponding author:
Shaohua Wu.)

Aimin Li, Shaohua Wu, Jian Jiao, and Qinyu Zhang are with the Department
of Electronic Engineering, Harbin Institute of Technology, Shenzhen 518055,
China (e-mail: hitliaimin@163.com; hitwush@hit.edu.cn; jiaojian@hit.edu.cn;
zqy@hit.edu.cn).

Ning Zhang is with the Department of Electrical and Computer Engi-
neering, University of Windsor, Windsor, ON N9B 3P4, Canada (e-mail:
ning.zhang@uwindsor.ca).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TWC.2021.3091719.

Digital Object Identifier 10.1109/TWC.2021.3091719

idea originates from the concept of random codes proposed
by Shannon. By pseudo-random coding, both the anti-noise
ability and the robustness of information transmission are
enhanced.

Due to the rateless characteristic, Spinal codes hold great
potential research value in the field of wireless communi-
cations. Different from conventional fixed-rate codes which
need to select a specific code length according to the channel
characteristics, rateless code forms a variable-length encod-
ing characteristic. It can adaptively generate as many coded
symbols as needed by a fixed input message sequence.
At the receiver end, the decoder can recover the message
sequence once sufficient channel output symbols are received.
Therefore, rateless code can be regarded as an adaptive-
coded-modulation (ACM) technique, which gives rise to its
remarkable potential value to be applied in wireless commu-
nications. The first practical rateless code is LT code [4], [5],
which is designed for the binary erasure channel (BEC). Then,
on the basis of LT code, the state-of-the-art Raptor code is pro-
posed [6], [7]. Raptor code concatenates LT code as outer code
with LDPC code, which further reduces the decoding complex-
ity and improves the error correction performance of LT code.
Since then, rateless code has drawn extensive research interest
due to its excellent adaptive channel characteristics. Many new
kinds of rateless code are designed, such as Kite codes [8], [9],
reconfigurable rateless code [10], and analog fountain codes
(AFC) [11]. Even some fixed-rate codes have been modified
to obtain a form of rateless transmission scheme [12]. Spinal
codes are a new class of rateless code which do not need to
frequently estimate the channel state to adjust the code rate and
modulation mode. Instead, it keeps generating and transmitting
pseudo-random coded symbols until the decoding process is
successful and an acknowledgment (ACK) is fed back to the
transmitter to interrupt the symbol transmission.

Theoretical performance analysis of Spinal codes in the FBL
regime is a fundamental prerequisite for the analytical design
of Spinal-codes-based high-efficiency techniques. To improve
Spinal codes under wireless communication scenarios, the-
oretical performance analysis is a primary need. In [3],
Spinal codes’ theoretical performance over the additive white
Gaussian noise channel (AWGN) and the binary symmetric
channel (BSC) is discussed, wherein the capacity achievability
of Spinal codes is proved, and a general idea of asymptotic
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error probability analysis of Spinal codes is given. In [13],
the authors derive the upper bound of FER for each priority of
UEP Spinal codes in the FBL regime over the AWGN channel
and the BSC, which is the first work on non-asymptotic
performance analysis of Spinal codes. In [14], a tighter FER
upper bound for Spinal codes over the BSC is derived, which
fits better with the FER simulation results of Spinal codes than
that in [13]. The theoretical research on Spinal codes under
the AWGN channel and the BSC is developing rapidly and
becoming more and more mature. However, related theoret-
ical research of Spinal codes over fading channels remains
deficient. In this paper, we will analyze the theoretical FER
performance of Spinal codes under the FBL regime over fading
channels. To our best knowledge, this is the first research on
error probability analysis with regard to Spinal codes over
fading channels.

Although Spinal codes hold advantages of the capacity-
achieving property and the ACM characteristics, there are
still some problems to be solved. Specifically, Spinal codes’
error correction ability over wireless channels is still weak;
Spinal codes’ decoding algorithm still needs to be improved
due to its high decoding complexity; Spinal codes’ coding
and decoding throughput are insufficient because of its serial
coding structure. To solve these problems, amounts of work
has been done for Spinal codes on its way from theory to
practice, which can be found in [15]–[19]. However, most
of the existing research tends to improve the performance
of Spinal codes in the long or medium length of the block
length. In 5G application scenarios, the transmission under
the short block length regime has become a requirement. For
Spinal codes in the short length of the block length, the coding
structure needs to be further optimized.

In this paper, a new Spinal codes’ structure is proposed,
which is called self-concatenation Spinal codes. We begin with
analyzing the FER upper bound for Spinal codes over the
Rayleigh fading channel. Then, inspired by the FER analysis
process, the proposed self-concatenation Spinal codes is intro-
duced, combined with its related FER analysis. Finally, con-
sidering that maximum likelihood (ML) decoding algorithm
under self-concatenation Spinal codes is with high complexity
when the length of information sequence increases, the parallel
self-concatenation Spinal codes is proposed, which not only
improves the encoding and decoding throughput of Spinal
codes but also reduces the FER of Spinal codes.

The main contributions of this work can be summarized as
follows:

• We derive a non-asymptotic (FBL) approximate FER
upper bound for Spinal codes over the Rayleigh fading
channel, which is the first work on performance analysis
of Spinal codes over fading channels.

• Based on the theoretical FER analysis, the self-
concatenation Spinal codes is proposed, which immensely
improves the FER performance of Spinal codes.

• We propose the parallel self-concatenation structure of
Spinal codes, which improves both the FER performance
and the decoding efficiency of Spinal codes.

The rest of this paper is organized as follows. Section II
introduces preliminaries of Spinal codes. In Section III,

the FER upper bound of Spinal codes over the Rayleigh fading
channel is derived. The details of the coding and decoding
process of self-concatenation Spinal codes are presented in
Section IV, in which the FER analysis of self-concatenation
Spinal codes is also given. In Section V, the proposed par-
allel self-concatenation Spinal codes is presented. Simulation
results are shown in Section VI, followed by conclusions in
Section VII.

II. RELATED WORKS

A. Encoding Structure of Spinal Codes

The encoding process of Spinal codes can be divided into
4 steps.

Step 1: An n-bit message M is divided into n/k k-bit
segments, denoted by mi, where i ∈ {1, 2, . . . , n/k}.

Step 2: The encoder calls hash function iteratively to map
the message segment mi to a v-bit hash state si as

si = h(si−1, mi), s0 = 0v, (1)

where s0 serves as the initial hash state known by both the
encoder and the decoder, v = 32 in the simulation of this
paper.

Step 3: The v-bit hash state si is input to the RNG as a seed
to generate pseudo-random c-bit symbols denoted by xi,j :

RNG :si →xi,j , (2)

where xi,j ∈ {0,1}c, si ∈ {0,1}v.
Step 4: The encoder maps the c-bit symbols to a channel

input set to fit the channel characteristics:

f : xi,j →Ω, (3)

where f is a constellation mapping function, Ω is the channel
input set. In this paper, our theoretical research and perfor-
mance simulation are all carried out under the condition of
uniform constellation mapping with f(x) = x. Fig. 1 shows
an example with n/k = 8.

B. Decoding Algorithm of Spinal Codes

The optimal decoding algorithm for Spinal codes is ML
decoding. In ML decoding, the decoder utilizes the shared
knowledge of the same hash function, the same initial hash
state value s0, and the same RNG to replay the coding process.
In short, the decoder aims to find the best matching sequence
M̂ ∈ {0, 1}n whose encoded vector x(M̂) is closest to the
received vector y in Euclidean distance. The mathematical
form of ML rule can be expressed as

M̂ = arg min
M ′∈{0,1}n

�y − x(M �)�

= arg min
M ′∈{0,1}n

n/k�
i=1

li�
j=1

�yi,j − xi,j(M �)�, (4)

where M̂ denotes the decoding result, M � represents the
candidate sequence and li is the number of symbols generated
from the ith hash state value si of the n-bit message M .

However, traversing all candidate sequences results in an
exponential increase in complexity. The serial coding structure
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Fig. 1. The encoding process of Spinal codes.

of Spinal codes determines that Spinal codes are a type of tree
code. As a result, the tree pruning decoding algorithm named
bubble decoding can be applied to decrease the decoding
complexity [2].

III. FER UPPER BOUND ANALYSIS OVER THE RAYLEIGH

FADING CHANNEL

Theoretical performance analysis of Spinal codes under the
FBL regime is a fundamental prerequisite for the analyti-
cal design of Spinal-codes-based high-efficiency techniques.
In this section, we derive a non-asymptotic approximate FER
upper bound for Spinal codes over the Rayleigh fading chan-
nel. We begin with briefly introducing the Rayleigh fading
channel model and then derive the FER upper bound for Spinal
codes over it.

A. Rayleigh Fading Channel

Rayleigh fading channel model can effectively describe
the wireless propagation environment with obstacles that can
scatter a large number of radio signals. In a terrestrial mobile
communication system, the channel can be generally modeled
as a Rayleigh fading channel. Generally, the receiver must
firstly detect and demodulate the data when receiving the sym-
bols. After these processing steps, the fading in a code block
can be generally reduced to flat fading. The mathematical
channel model can be expressed as

yi,j = ri,je
jφxi,j (M) + ni,j , (5)

where yi,j denotes the received symbol, xi,j (M) is the coded
symbol of message sequence M , φ is uniformly distributed
over (0, 2π) and ri,j obeys Rayleigh distribution with

p (ri,j) =

⎧⎨
⎩

ri,j

σ1
2
e
− ri,j

2

σ12 ri,j ≥ 0

0 ri,j < 0.

(6)

Fig. 2. Flat slow Rayleigh fading channel.

Consider a slow fading channel. The receiver will compen-
sate the received signal after coherent demodulation, matched
filtering, and sampling. And then, φ ≈ 0 and we can simplify
the model as

yi,j = ri,jxi,j (M) + ni,j . (7)

Fig. 2 shows a flat slow Rayleigh fading channel
model. In the next subsection, we will approximate the
non-asymptotic FER upper bound for Spinal codes under this
model.

B. FER Upper Bound Approximation

Theorem 1 FER Upper Bound Approximation for Spinal
Codes Over the Rayleigh Fading Channel: Consider Spinal
codes with message length n, segmentation parameter k and
modulation parameter c transmitted over an Rayleigh fading
channel with noise variance σ2 and Rayleigh parameter σ1.
The FER under ML decoding can be approximately upper
bounded by

Pe
<≈ 1 −

n/k�
a=1

(1 − �a), (8)

with

�a = min
�
1,
�
2k − 1

	
2n−ak · min (1, Ra)



, (9)
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where Ra can be calculated by (10), shown at the bottom of
the page.

In (10), Γ(·) denotes the Gamma function. li is the number
of symbols generated from the ith hash state value si.

The proof of Theorem 1 can be succinctly divided into
3 parts. Recall that the ML decoder aims to find the most
matching candidate sequences in M � as the decoding output,
we begin with investigating the set of candidate sequences and
classify it into two subsets: M �

c and M �
w. This part is labeled

by Candidate Sequences Classification in the proof. Second,
we analyze the cost of correct candidate sequence D (m�

c)
and Da (m�

c), which is labeled by Cost Analysis of Correct
Sequences. At last, we analyze the cost of wrong candidate
sequence D (m�

w), which is labeled by Cost Analysis of
Wrong Sequences.

Proof: 1) Candidate Sequences Classification: Suppose
that message M =

�
m1, m2 . . . , mn/k

	
. Let xi,j(M) denote

the jth coded symbol generated from the ith hash state value
si of the n-bit message M , yi,j denote the corresponding
symbol received by the receiver, and ni,j represent the cor-
responding white Gaussian noise. Over a flat slow Rayleigh
fading channel, it is easy to obtain that

yi,j = ri,jxi,j (M) + ni,j . (11)

For Spinal codes over the Rayleigh fading channel,
ML decoding algorithm is straightforward, with

M̂ = argmin
M ′∈{0,1}n

�y − x(M �)�

= argmin
M ′∈{0,1}n

n/k�
i=1

li�
j=1

�yi,j − xi,j(M �)�, (12)

where M � denotes the candidate sequence and li is the number
of symbols generated from the ith hash state value si of the
n-bit message M .

We classify the candidate sequence set into two subsets: M �
c

and M �
w. The subset M �

c is defined by

Mc
� = {mc

�|mc
� = M} , (13)

and the subset M �
w is defined by

Mw
� = {mw

�|mw
� �= M} . (14)

2) Cost Analysis of Correct Sequences: Second, we analyze
the cost of the candidate sequence in M �

c. The candidate
sequence in M �

c is unique with m�
c ∈ M �

c. The cost of it is

denoted by D(m�
c) and can be calculated as follows.

D(m�
c) =

n/k�
i=1

li�
j=1

(yi,j − xi,j (m�
c) )2

=
n/k�
i=1

li�
j=1

(ri,jxi,j (M) + ni,j − xi,j (M))2 (15)

We assume that ri,j is independently and identically dis-
tributed (i.i.d). Then, it holds that

E

�
(ri,jxi,j (M) + ni,j − xi,j (M))2

�
=

�
2σ1

2 −√
2πσ1 + 1

	
(2c + 1) (2c − 1)

12
+ σ2. (16)

To pave the way for the rest of the proof, we introduce a
definition Da(m�

c) here with

Da(m�
c) =

n/k�
i=a

li�
j=1

(ri,jxi,j (M) + ni,j − xi,j (M))2. (17)

Denote the right hand side of (16) as g (σ, σ1). The math-
ematical expectation of (15) and (17) can be calculated using

E (D(m�
c)) = g (σ, σ1)

n/k�
i=1

li

E (Da(m�
c)) = g (σ, σ1)

n/k�
i=a

li. (18)

By applying the chernoff bound, we can obtain that for
∀ε ≥ 0, it holds that

P

⎛
⎝D (mc

�) � (1 + ε)
n/k�
i=1

lig (σ, σ1)

⎞
⎠

� 1 −
�

eε

(1 + ε)1+ε

�n/k�
i=1

lig(σ,σ1)

. (19)

This means that we possess probability of at least 1 −�
eε

(1+ε)1+ε

�n/k�
i=1

lig(σ,σ1)

to assure that

D (mc
�) � (1 + ε)

n/k�
i=1

lig (σ, σ1). (20)

Ra =
1

Γ

�
1+

n/k�
i=a

li

�
2

�
⎛
⎜⎜⎜⎝

π (1 + ε)
��

2σ1
2 −√

2πσ1 + 1
	 (2c+1)(2c−1)

12 + σ2
� n/k�

i=a

li

22c

⎞
⎟⎟⎟⎠

n/k�
i=a

li

�
2

(10)
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Fig. 3. The relationship between y and x(m′
1w).

As eε

(1+ε)1+ε decreases monotonically with respect to ε,

it turns out that eε

(1+ε)1+ε < 1. Then, we can obtain that

lim
n/k�
i=1

lig(σ,σ1)→∞
1 −

�
eε

(1 + ε)1+ε

�n/k�
i=1

lig(σ,σ1)

= 1. (21)

(19) and (21) means that for a large enough
n/k�
i=1

lig (σ, σ1), (20)

possess an extremely high probability to be true. Similarly,

we can also declare that Da(m�
c) ≤ (1 + ε)

n/k�
i=a

lig (σ, σ1) for

an appropriate parameter selection of ε and
n/k�
i=a

lig (σ, σ1).

3) Cost Analysis of Wrong Sequences: At last, we analyze
the cost of wrong candidate sequences in M �

w, which is
denoted by D(m�

w). The FER of Spinal codes is

Pe = P (∃m�
w : D (m�

w) ≤ D (m�
c)) . (22)

Let m�
1w = [m�

1, m
�
2 . . . , m�

n/k] be a member of set M �
1w,

where M �
1w is defined as

M1w
� = {m1w

�|m1
� �= m1} . (23)

Let Ei represent the event that there exists an error in the
ith segment mi. By applying (20) and the union bound of
probability, we have

P (E1) ≤
�

m′
1w∈M ′

1w

P (D (m�
1w) ≤ D (m�

c))

≤
�

m′
1w∈M ′

1w

P

⎛
⎝D (m�

1w) ≤ (1 + ε)
n/k�
i=1

lig (σ, σ1)

⎞
⎠.

(24)

Due to Spinal codes’ coding structure which combines a
hash function with an RNG, all the coded symbols in x(m�

c)
and x(m�

1w) are mapped independently and randomly. Now for
the uniform constellation, it is easy to verify that the coded
symbol xi,j(m�

1w) is independent with xi,j(m�
c) for any i ≥ 1

and obeys uniform distribution U(0, 2c − 1).
The relationship between y and x(m�

1w) can be intuitively
displayed by Fig. 3, where y is the received matrix, r is related

to the approximate upper bound we derived in (24), x(m�
1w)

obeys the uniform distribution U(0, 2c−1). Therefore, we can
approximate the probability in (24) as follows.

P

⎛
⎝D (m�

1w) ≤ (1 + ε) g (σ, σ1)
n/k�
i=1

li

⎞
⎠

≈
Vb

⎛
⎝
�

(1 + ε) g (σ, σ1)
n/k�
i=1

li,
n/k�
i=1

li

⎞
⎠

Vc

�
2c,

n/k�
i=1

li

�

=
1

Γ

�
1 +

n/k�
i=1

li/2

�
⎛
⎜⎜⎜⎝

π (1 + ε) g (σ, σ1)
n/k�
i=1

li

22c

⎞
⎟⎟⎟⎠

n/k�
i=1

li/2

,

(25)

where Vb (r, n) is the volume of an n−dimensional ball with
radius r and Vc (l, n) is the volume of an n−dimensional cube
with side length l.

Since the volume of the ball in (25) might be larger
than the volume of the cube when g (σ, σ1) is large enough,
the function min (1, ·) can be applied to modify it as follows.

P (E1) ≤
�

m′
1w∈M ′

1w

P

⎛
⎝D (m�

1w) ≤ (1 + ε) g (σ, σ1)
n/k�
i=1

li

⎞
⎠

<≈
�

m′
1w∈M ′

1w

min (1, R1)

= |M �
1w|min (1, R1) , (26)

where |M �
1w| denotes the size of M �

1w with |M �
1w| =�

2k − 1
	
2n−k and R1 is equal to the right hand side of (25).

Furthermore, (26) can also be further modified by min (1, ·).

P (E1) <≈ min
�
1,
�
2k−1

	
2n−k ·min (1, R1)



. (27)

Next, we analyze an approximate upper bound of
P(Ea|E1, . . . , Ea−1), a ≥ 2. Let m�

aw = [m�
1, m

�
2 . . . , m�

n/k]
be a member of set M �

aw, where M �
aw is defined as

Maw
�=
�

maw
�|m�

1 = m1, . . . , m
�
a−1 =ma−1, m

�
a �=ma



.

(28)

Similarly, it holds that

P(Ea|E1, . . . , Ea−1)≤
�

m′
aw∈M ′

aw

P (D (m�
aw) ≤ D (m�

c)).

(29)

Since m�
1 = m1, m

�
2 = m2, . . . , m

�
a−1 = ma−1, . . . , m

�
a �=

ma, we have xi,j (m�
c) = xi,j (m�

aw) for any i < a.
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Then, P (D (m�
aw) ≤ D (m�

c)) can be reduced to

P

⎛
⎝n/k�

i=a

li�
j=1

(yi,j − xi,j (m�
aw) )2

≤
n/k�
i=a

li�
j=1

(yi,j − xi,j (m�
c) )2

⎞
⎠ . (30)

Denote
n/k�
i=a

li�
j=1

(yi,j−xi,j (m�
aw) )2 as Da (m�

aw). We obtain

that

P(Ea|E1, . . . , Ea−1)

≤
�

m′
aw∈M ′

aw

P (D (m�
aw) ≤ D (m�

c))

(a)
=

�
m′

aw∈M ′
aw

P (Da (m�
aw) ≤ Da (m�

c))

(b)

≤
�

m′
aw∈M ′

aw

P

⎛
⎝Da (m�

aw) ≤ (1 + ε) g (σ, σ1)
n/k�
i=a

li

⎞
⎠

(c)≈
�

m′
aw∈M ′

aw

Vb

⎛
⎝
�

(1 + ε) g (σ, σ1)
n/k�
i=a

li,
n/k�
i=a

li

⎞
⎠

Vc

�
2c,

n/k�
i=a

li

�

≤ |M �
aw|min (1, Ra)

=
�
2k − 1

	
2n−ak min (1, Ra)

≤ min
�
1,
�
2k − 1

	
2n−ak · min (1, Ra)



, (31)

where Ra is calculated using

Ra =

Vb

⎛
⎝
�

(1 + ε) g (σ, σ1)
n/k�
i=a

li,
n/k�
i=a

li

⎞
⎠

Vc

�
2c,

n/k�
i=a

li

�

=
1

Γ

�
1 +

n/k�
i=a

li/2

�
⎛
⎜⎜⎜⎝

π (1 + ε) g (σ, σ1)
n/k�
i=a

li

22c

⎞
⎟⎟⎟⎠

n/k�
i=a

li/2

.

(32)

In (31), (a) is given by (30), (b) derives from the chernoff
bound, and (c) can be obtained similarly as approximation
(25) does.

Finally, the FER of Spinal codes, i.e., Pe, can be expressed
as follows.

Pe = P
�
E1 ∪ E2 ∪ · · · ∪ En/k

	
= 1 −

n/k�
a=1

P
�
Ēa|Ē1, · · · , Ēa−1

	
. (33)

Let �a = min
�
1,
�
2k − 1

	
2n−ak · min (1, Ri)



. By adopt-

ing (27) and (31), it turns out that

Pe
<≈ 1 −

n/k�
i=1

(1 − �a). (34)

At last, the proof of Theorem 1 is finished. �
Now that we have completed the derivation of FER upper

bound for Spinal codes over the Rayleigh fading channel.
In the process of derivation, we assume that ri,j is i.i.d and
obeys Rayleigh distribution. In fact, we can popularize the
above results only by replacing the distribution of ri,j .

For example, if ri,j is a constant and ri,j = 1, the channel
turns into an AWGN channel and we can derive the upper
bound for Spinal codes over the AWGN channel by simply
recalculating (16). Replace g (σ, σ1) with σ2, Theorem 2 can
be obtained.

Theorem 2 FER Upper Bound for Spinal Codes Over the
AWGN Channel: Consider Spinal codes with message length
n, segmentation parameter k and modulation parameter c
transmitted over an AWGN channel with noise variance σ2,
then the FER under ML decoding can be upper bounded by

Pe
<≈ 1 −

n/k�
a=1

(1 − �a), (35)

with

�a = min
�
1,
�
2k − 1

	
2n−ak · min (1, Ra)



, (36)

where

Ra =
1

Γ

�
1+

n/k�
i=a

li

�
2

�
⎛
⎜⎜⎜⎝

π (1 + ε)σ2
n/k�
i=a

li

22c

⎞
⎟⎟⎟⎠

n/k�
i=a

li

�
2

.

(37)

C. Simulation Results

The simulation is carried out with ML decoding. We set the
parameter n as short as 8 due to its exponential complexity.
(This makes the ML-decoding-based simulation realizable
without affecting the verification of the non-asymptotic FER
upper bound), other related parameters are set as follows:
segmentation parameter k = 2, hash coefficient v = 32,
Rayleigh fading coefficient σ1 = 0.7, the number of trans-
mission passes Pass = 15 and modulation parameter c = 8.
Through simulations, we find that ε = 1 is a good choice
to hold the upper bound. As a result, in this paper we
choose ε = 1 to characterize the approximate FER upper
bound.

Fig. 4 (a) shows the corresponding comparison over the
AWGN channel. The simulation is carried out with ML
decoding with n = 8, k = 2, v = 32, Pass = 8 and c = 8.
From Fig. 4, we can see that the derived upper bound fits the
simulation FER well and approaches the simulation FER as
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Fig. 4. Comparison between simulation results and FER upper bounds with n = 8, v = 32, k = 2, c = 8 and ε = 1.

SNR increases. These simulation results verify the correctness
of Theorem 1 and Theorem 2.

From Fig. 4 (b), we can observe that the FER performance
of Spinal codes is not ideal over the Rayleigh fading channel.
To improve the FER performance of Spinal codes over the
Rayleigh fading channel, we propose a new structural design
called self-concatenation Spinal codes. The specific form of
the structure, the reason we propose this structure, and the
detailed theoretical analysis of our proposed structure will be
shown in the next section.

IV. SELF-CONCATENATION SPINAL CODES

By investigating the structure of Spinal codes, we can find
that a coded symbol xa,j is only related to the segmentation
sequence mi with i ≤ a. On the contrary, for a segmentation
sequence ma, the coded symbols that relate to it are xi,j with
i ≥ a. For ML decoding, if there is a candidate sequence
M � = (m�

1, m
�
2 . . . , m�

n/k) which is inconsistent with the
correct sequence M =

�
m1, m2 . . . , mn/k

	
from the ath

segmentation sequence with m1 = m�
1, m2 = m�

2, . . . , m
�
a �=

ma, we have xi,j(M) = xi,j(M �) for i < a, and xi,j(M)
are independent with xi,j(M �) for i ≥ a. In fact, the inde-
pendence between xi,j(M) and xi,j(M �) will significantly
increase the Euclidean distance between them. Then, con-
sidering that the decoder tends to choose the best matching
sequence of the encoding vector that is closest to the received
symbol in Euclidean distance, it can be inferred that when
an error occurs, the number of independent symbols between
xi,j(M) and xi,j(M �) determines the error correction ability
of the system.

Specifically, in the derivation process of FER analysis,
when an error occurs at ma, the number of encoded symbols
xi,j(M �) that are independent with xi,j(M) can be calculated
by
�n/k

i=a li. From (9) and (10), it can be proved that �a is
monotone decreasing with respect to

�n/k
i=a li. Therefore, our

goal of structural design of Spinal codes is to further increase
the number of independent symbols

�n/k
i=a li when an error

occurs.

A. The Encoding Structure of Self-Concatenation
Spinal Codes

The encoding structure of self-concatenation Spinal codes
is shown in Fig. 5. The coding process of self-concatenation
Spinal codes can be divided into 5 steps:

Step 1: An n-bit message M is divided into n/k k-bit
segments. The segment is denoted by mi, where i ∈
{1, 2, . . . , n/k}.

Step 2: The encoder calls the hash function n/k times to
generate the hash state value sn/k.

Step 3: The hash state value sn/k serves as an initial state
of the original Spinal codes to iteratively generate the hash
state value.

Step 4: The v-bit hash state is input to the RNG as a seed
to generate pseudo-random c-bit symbols denoted by xi,j .

Step 5: The encoder maps the c-bit symbols to a channel
input set to fit the channel characteristics.

The ML decoding process of self-concatenation Spinal
codes is the same as original Spinal codes, which can be
expressed in (4).

B. FER Analysis of Self-Concatenation Spinal Codes

The design of self-concatenation Spinal codes is inspired
by the FER analysis of Spinal codes over the Rayleigh
fading channel. In this subsection, we derive an approximate
FER upper bound for self-concatenation Spinal codes. The
rationality and superiority of self-concatenation Spinal codes
are explained theoretically in this subsection.

Theorem 3 FER Upper Bound for Self-Concatenation
Spinal Codes Over the Rayleigh Fading Channel: Consider
Spinal codes with message length n, segmentation parameter
k and modulation parameter c transmitted over an AWGN
channel with noise variance σ2, and Rayleigh parameter σ1,
then the FER under ML decoding can be upper bounded by

Pe
<≈ 1 −

n/k�
i=1

(1 − �i), (38)
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Fig. 5. The encoding process of self-concatenation Spinal codes.

with

�a = min
�
1,
�
2k − 1

	
2n−ak · min (1, R)



, (39)

where R can be calculated by (40), shown at the bottom of
the page.

The idea of the proof of Theorem 3 is slightly similar to the
proof of Theorem 1, and thus we give the detailed derivation
in Appendix A.

Remark 1: Compare Theorem 3 with Theorem 1, we can
see that the only difference of the FER upper bounds between
the original Spinal codes and the proposed self-concatenation
Spinal codes is that, for the original Spinal codes, �a is with
respect to

�n/k
i=a li; For the self-concatenation Spinal codes,

�a is with respect to
�n/k

i=1 li. Consider that �a is monotone
decreasing with respect to

�n/k
i=a li or

�n/k
i=1 li, we can

qualitatively conclude that the FER of self-concatenation
Spinal codes is lower than that of original Spinal
codes. Corresponding simulation results will be shown in
Section VI.

V. PARALLEL SELF-CONCATENATION SPINAL CODES

It can be known from the theoretical analysis and sim-
ulation results that the FER performance of the proposed
self-concatenation Spinal is outstanding. (even when the length
of message sequence n is as short as 8). However, due to
the particularity of coding structure, ML decoding without
pruning seems to be the only decoding method, which may
result in exponential complexity with regard to n. As a result,
we can only conclude that self-concatenation Spinal codes is
practical with outstanding FER performance when the length

Fig. 6. The encoding structure of parallel Spinal codes.

of message sequence is short, but how to utilize it in the
case of long message sequence length remains a problem.
In this section, the concept of parallel structure is proposed
to solve this problem. By parallel self-concatenating, not only
the encoding and decoding throughput of Spinal codes is
improved, but also the FER is reduced.

A. Parallel Spinal Codes
In this subsection, we begin with introducing the parallel

structure of Spinal codes, and then analyze the advantages
and disadvantages of it.

The encoding structure of parallel Spinal codes is shown
in Fig. 6, which can be divided into two steps: 1) A message
sequence M is uniformly divided into r parallel sub-sequences
to; 2) These sub-sequences are fed into Spinal codes encoders
respectively to generate pseudo-random code words.

The advantage of the parallel operation is mainly in
the aspect of decoding throughput. Let’s take n = 32,

R =
1

Γ

�
1+

n/k�
i=1

li

�
2

�
⎛
⎜⎜⎜⎝

π (1 + ε)
��

2σ1
2 −√

2πσ1 + 1
	 (2c+1)(2c−1)

12 + σ2
� n/k�

i=1

li

22c

⎞
⎟⎟⎟⎠

n/k�
i=1

li

�
2

(40)
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r = 4 as an example. For a message sequence with mes-
sage length n = 32, if ML decoding algorithm is used,
the number of candidate sequences at the decoding end is
232, and thus the decoding process needs 232 cost calcu-
lations. Nevertheless, if the sequence is divided into four
8-bit sub-sequences and each sub-sequence adopts ML decod-
ing algorithm, the number of candidate sequences of each
sub-sequence is 28. For the decoding of the complete message
sequence, the decoding process needs 4 × 28 = 210 cost cal-
culations. Compared with original Spinal codes, the decoding
throughput of the parallel structure increases by nearly 222

times. As a result, we can conclude that the parallel structure
can significantly improve the decoding throughput of Spinal
codes.

However, the improvement of decoding complexity sacri-
fices the FER performance. In [20], Gallager derives that under
ML decoding, the average error probability of a random code
is

Pe ≤ 2−nRE(R), (41)

where n is the length of the message sequence, R is the rate of
the random code, and Er(R) is with respect to R. From (36),
it turns out that the average error probability upper bound of
a fixed-rate random code decreases exponentially with respect
to the length of the message sequence n. The parallel structure
divides the long message sequence into several short sub-
sequences, and thus results in the rise of the FER upper
bound. To mathematically elaborate it, we define that Pe−OS

is the FER of original Spinal codes, Pe−PS is the FER of
parallel Spinal codes and Pe is the FER of the divided sub-
sequences. For parallel Spinal codes with r parallel sub-
sequences, the correct decoding of the message sequence is
equivalent to the correct decoding of all the parallel sub-
sequences. Therefore, we have

Pe−PS = 1 − (1 − Pe)
4
. (42)

Due to (36), we can obtain that Pe−OS < Pe. Thus we
obtain that

Pe−OS < 1 − (1 − Pe−OS)4

< 1 − (1 − Pe)
4

= Pe−PS. (43)

To conclude, the parallel structure can significantly increase
the decoding throughput of Spinal codes, but this decoding
throughput improvement is at the cost of sacrificing the FER
performance.

B. Parallel Self-Concatenation Spinal Codes

Considering the excellent FER performance of self-
concatenation Spinal codes, we combine the parallel structure
with the self-concatenation structure: the parallel structure
improves the decoding throughput under ML decoding;
the self-concatenation structure compensates the FER loss
resulted by the parallel structure. The basic structure of
self-concatenation Spinal codes is shown in Fig. 7.

Here, the general idea of error probability analysis cor-
responding to parallel self-concatenation Spinal codes is

Fig. 7. The encoding structure of parallel self-concatenation Spinal codes.

also given. Denote P �
e as the FER of the sub-sequences of

self-concatenation Spinal codes, Pe−PSCS is the FER of paral-
lel self-concatenation Spinal codes. For parallel Spinal codes
with r sub-sequences, the correct decoding of the message
sequence is equivalent to the correct decoding of all the four
sub-sequences. Therefore, we can calculate Pe−PSCS by

Pe−PSCS = 1 − (1 − P �
e)

4
, (44)

where P �
e can be upper bounded by Theorem 3.

C. Qualitative Analysis of Performance

1) FER Comparison: From (38), i.e., Pe−OS < Pe−PS,
we can conclude that the paralleling operation will raise up
the FER of Spinal codes. However, self-concatenation Spinal
codes takes an advantage over original Spinal codes in FER
with P �

e < Pe. After the parallel operation, it holds that
Pe−PSCS = 1 − (1 − P �

e)
r and Pe−PS = 1 − (1 − Pe)r.

Since P �
e < Pe, we can obtain that Pe−PSCS < Pe−PS .

As a result, we conclude that the self-concatenation structure
could compensate for the FER loss resulted from the parallel
structure.

2) Complexity Analysis: For Spinal codes using ML decod-
ing algorithm, the average decoding time can be succinctly
expressed as O = NC, where N denotes the number of
cost calculations and C is the average time of each cost
calculation. For original Spinal codes, we have OOS = 2nCOS;
For parallel Spinal codes, it holds that OPS = r2n/rCPS; For
parallel self-concatenation Spinal codes, we have OSCPS =
r2n/rCSCPS. As the coding structure of self-concatenation
Spinal codes is more complicated than that of original Spinal
codes, we have CSCPS > CPS and thus it is evident to
hold that OSCPS > OPS. We can also obtain that OOS

OSCPS
=

2nCOS
r2n/rCPS

. Since 2n

r2n/r = O
��

21− 1
r

�n�
and COS

CPS
= O (1),

we can infer that OOS > OSCPS is true for most of the choices
of message length n. (More detailed and visual results are
shown through Monte Carlo simulations in Section VI.)

VI. SIMULATION RESULTS

Fig. 8 demonstrates the comparison of FER performance
between self-concatenation Spinal codes and original Spinal
codes. The simulations are carried out with ML decoding
rule. We set the length of message sequence n as short
as 8, other related parameters are set as follows: segmentation
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Fig. 8. FER performance comparison and upper bounds over the Rayleigh
fading channel with n = 8, k = 2, c = 8, σ1 = 0.7 and ε = 1.

Fig. 9. FER performance comparison over the Rayleigh fading channel with
σ1 = 0.7.

parameter k = 2, Rayleigh coefficient σ1 = 0.7, the number of
transmission passes Pass = 15, modulation parameter c = 8.

From Fig. 8, we can see that by introducing the
self-concatenation structure, the FER of Spinal codes over
Rayleigh channels significantly reduces. Besides, Fig. 8 also
confirms the effectiveness of the FER upper bound of
self-concatenation Spinal codes. The derived upper bounds fit
better with the simulation results as SNR increases. The gap at
the low SNR regime is mainly due to corresponding looseness
of Eq. (25), where the volume of the ball may be bigger
than the volume of the cube when the noise variance is too
large.

Fig. 9 shows the comparison of FER performance among the
proposed parallel self-concatenation Spinal codes, the parallel
Spinal codes, and the original Spinal codes with bubble
decoding. For the parallel self-concatenation Spinal codes and
parallel Spinal codes, the message length is n = 24, which

Fig. 10. Normalized decoding time comparison among different
coding-decoding pairs.

are divided into 3 sub-sequences. The segmentation parameter
k is set as k = 2 for the sub-sequence and the number of
transmission passes is set as Pass = 15. For the original
Spinal codes with bubble decoding, we set the length of the
message sequence n as 24, other related parameters are set
as follows: segmentation parameter k = 4, the number of
transmission passes Pass = 30, bubble pruning parameter
B = 64. The simulations are both carried out under the same
fixed rate, the same Rayleigh coefficient σ1 = 0.7, and the
same modulation parameter c = 8.

Fig. 10 gives the average normalized decoding time of dif-
ferent ‘transmission scheme - decoding algorithm’ pairs. It can
be seen that the decoding time of parallel self-concatenation
Spinal codes takes a tremendous advantage over the parallel
Spinal codes with bubble decoding. Although the decoding
time of parallel self-concatenation Spinal codes is slightly
higher than the parallel Spinal codes with ML decoding due to
its special coding structure, considering the poor FER perfor-
mance of parallel Spinal codes, the parallel self-concatenation
Spinal codes holds greater practicability.

From Fig. 9 and Fig. 10, we can conclude that by parallel
self-concatenating, both the FER performance and the decod-
ing throughput are promoted evidently compared with the
original Spinal codes with bubble decoding, which gives rise
to the extensive application value of parallel self-concatenation
Spinal codes.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we aim to solve the problem of poor FER per-
formance and insufficient decoding throughput of Spinal codes
over the Rayleigh fading channel. We begin with analyzing the
non-asymptotic FER performance of Spinal codes over the
Rayleigh fading channel. Also, inspired by the FER analy-
sis, we propose a self-concatenation structure to ameliorate
its poor FER performance. The proposed self-concatenation
Spinal codes can be applied in the scenario wherein the mes-
sage sequence is very short. For a longer sequence that is not
suitable for ML decoding, the parallel structure is introduced
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to improve the decoding throughput of self-concatenation
Spinal codes. By parallel self-concatenating, both the FER per-
formance and the decoding throughput are promoted evidently
compared with the original Spinal codes with bubble decod-
ing. We hope that this work will stimulate further research
in the application of high-efficiency Spinal-codes-based
techniques.

The investigation in this paper also leaves some open
challenges and issues for future research. We briefly discuss
some of them in the following. First, the FER analysis in
this paper is based on the optimal ML decoding algorithm
over the Rayleigh fading channel. For Spinal codes, the error
probability analysis of some practical low-complexity decod-
ing algorithms, such as the bubble decoding algorithm and the
FSD decoding algorithm, is still to be derived. Furthermore,
we believe that designing a customized practical decoding
algorithm for the proposed self-concatenation structure will
be of great potential in the future.

APPENDIX A
PROOF OF THEOREM 3

The proof of Theorem 3 can be also divided into three steps:
1) Candidate Sequences Classification; 2) Cost Analysis of
Correct Sequences; 3) Cost Analysis of Wrong Sequences.
The main difference with the proof of Theorem 2 occurs in
the third step. Therefore, we elaborate 3) Cost Analysis of
Wrong Sequences here.

Proof: 3) Cost Analysis of Wrong Sequences., Similarly,
The FER of Spinal codes is

Pe = P (∃m�
w : D (m�

w) ≤ D (m�
c)) . (45)

Let M �
1w = [m�

1, m
�
2 . . . , m�

n/k] denote the set of wrong
sequences with m�

1 �= m1, m�
1w ∈ M �

1w. Let Ei represent the
event that there exists an error in the ith segment. By applying
the union bound of probability, we have

P (E1) ≤
�
m′

1w

P (D (m�
1w) ≤ D (m�

c)). (46)

By similarly utilizing the chernoff bound, it turns out that

P (E1) ≤
�
m′

1w

P

⎛
⎝D (m�

1w) ≤ (1 + ε) g (σ, σ1)
n/k�
i=1

li

⎞
⎠. (47)

The probability in (47) can be approximated as follows:

P

⎛
⎝D (m�

1w) ≤ (1 + ε) g (σ, σ1)
n/k�
i=1

li

⎞
⎠

≈
Vb

⎛
⎝
�

(1 + ε) g (σ, σ1)
n/k�
i=1

li,
n/k�
i=1

li

⎞
⎠

Vc

�
2c,

n/k�
i=1

li

�

=
1

Γ

�
1 +

n/k�
i=1

li/2

�
⎛
⎜⎜⎜⎝

π (1 + ε) g (σ, σ1)
n/k�
i=1

li

22c

⎞
⎟⎟⎟⎠

n/k�
i=1

li/2

,

(48)

where Vb (r, n) is the volume of an n−dimensional ball with
radius r and Vc (l, n) is the volume of an n−dimensional cube
with side length l.

Since the volume of the ball in (48) might be larger
than the volume of the cube when g (σ, σ1) is large enough,
the function min (1, ·) can be applied to modify it as follows.

P (E1) ≤
�

m′
1w∈M ′

1w

P

⎛
⎝D (m�

1w) ≤ (1 + ε) g (σ, σ1)
n/k�
i=1

li

⎞
⎠

<≈
�

m′
1w∈M ′

1w

min (1, R1)

= |M �
1w|min (1, R1) , (49)

where |M �
1w| denotes the size of M �

1w with |M �
1w| =�

2k − 1
	
2n−k and R1 is equal to the right hand side of (43).

Furthermore, (49) can also be further modified by min (1, ·).

P (E1) <≈ min
�
1,
�
2k − 1

	
2n−k · min (1, R1)



. (50)

Next, we analyze an approximate upper bound of
P(Ea|E1, . . . , Ea−1), a ≥ 2. Let M �

aw = [m�
1, m

�
2 . . . , m�

n/k]
denote the set of wrong sequences with m�

1 = m1, m
�
2 =

m2, . . . , m
�
a−1 = ma−1, . . . , m

�
a �= ma. Let m�

aw ∈ M �
aw.

Similarly, It holds that

P(Ea|E1, . . . , Ea−1) ≤
�

m′
aw∈M ′

aw

P (D (m�
aw) ≤ D (m�

c)).

(51)

Due to self-concatenation structure of Spinal codes, though
m�

1 = m1, m
�
2 = m2, . . . , m

�
a−1 = ma−1, . . . , m

�
a �= ma,

we cannot conclude that xi,j (m�
c) = xi,j (m�

aw) for any i < a
here (the main difference with that in the proof of Theorem 2).
The reason is that for any 1 ≤ a ≤ n/k, the error occurs at
ma will result in a different hash state at sn/k. Since sn/k

serves as an initial hash state for generating all coded symbols
xi,j with 1 ≤ i ≤ n/k for self-concatenation Spinal codes,
we can obtain that instead of xi,j (m�

c) = xi,j (m�
aw) for any

i < a, all the coded symbols in x(m�
c) and x(m�

1w) are mapped
independently and randomly for any 1 ≤ a ≤ n/k. Therefore,
it holds that

P(Ea|E1, . . . , Ea−1)

≤
�

m′
aw∈M ′

aw

P (D (m�
aw) ≤ D (m�

c))

≤
�

m′
aw∈M ′

aw

P

⎛
⎝D (m�

aw) ≤ (1 + ε) g (σ, σ1)
n/k�
i=1

li

⎞
⎠
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≈
�

m′
aw∈M ′

aw

Vb

⎛
⎝
�

(1 + ε) g (σ, σ1)
n/k�
i=1

li,
n/k�
i=1

li

⎞
⎠

Vc

�
2c,

n/k�
i=1

li

�

≤ |M �
aw|min (1, R)

=
�
2k − 1

	
2n−ak min (1, R)

≤ min
�
1,
�
2k − 1

	
2n−ak · min (1, R)



. (52)

where R is calculated using

R =

Vb

⎛
⎝
�

g (σ, σ1)
n/k�
i=1

li,
n/k�
i=1

li

⎞
⎠

Vc

�
2c,

n/k�
i=1

li

�

=
1

Γ

�
1 +

n/k�
i=1

li/2

�
⎛
⎜⎜⎜⎝

πg (σ, σ1)
n/k�
i=1

li

22c

⎞
⎟⎟⎟⎠

n/k�
i=1

li/2

. (53)

Note that R = R1, let �a =
min

�
1,
�
2k − 1

	
2n−ak · min (1, R)



. By adopting (50)

and (52), it turns out that

Pe
<≈ 1 −

n/k�
a=1

(1 − �a). (54)

At last, the proof of Theorem 3 is finished. �
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