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Abstract—This paper establishes an upper bound on the block
error rate (BLER) of Spinal codes, the first rateless codes proven
to achieve Shannon capacity in additive white Gaussian noise
(AWGN) and binary symmetric channels (BSC). Unlike the
conventional reliance on the 1965 Gallager random coding bound
[1, Theorem 5.6.2] for deriving upper bounds, as illustrated in
2016 [2] by Yu et. al, this study deviates by noting that Gallager’s
bound may not adequately represent the distinct properties of
specific random codes like Spinal codes and may result in loose
bounding performance. We thus introduce novel techniques to
refine existing results and enhance the bounding tightness. Our
main results are two explicit upper bounds on the BLER of Spinal
codes over the AWGN channel, accompanied by theoretical proofs
that validate their tightness. Potential applications of the bounds
and insights for the coding design are explored in this work.

Index Terms—Spinal codes, decoding error probability, ML
decoding, upper bounds, rateless codes.

I. INTRODUCTION

A. Background

S PINAL code is a capacity-achieving channel coding
technique that has been proved to asymptotically achieve

the Shannon capacity over both the additive white Gaussian
noise (AWGN) channel and the binary symmetric channel
(BSC) [3]. The exceptional performance of Spinal codes stems
from the combination of hash functions and Random Number
Generators (RNGs), which provide Spinal code with superior
code rate performance across wide range of channel condi-
tions. In [4] and [5], it has been shown that rateless Spinal
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codes exhibit higher rate performance compared to fixed-rate
Low-Density Parity-Check (LDPC) codes [6], rateless Raptor
codes [7], and layered rateless Strider codes [8], across a wide
range of channel conditions and message sizes.

With outstanding rate performance for short message
lengths and a natural adaptability to time-varying channel
conditions, Spinal codes have shown significant potential for
deployment in 6G non-terrestrial networks (NTN) [9], such as
deep space exploration [10], [11], UAV networks [12]–[15],
and satellite laser communications [16]. Numerous coding-
decoding algorithms are designed to improve the performance
of Spinal codes. Such explorations include the application
of puncturing on Spinal codes [17], [18], coding structure
improvements [2], [19]–[23], concatenation with outer codes
[24]–[27], Compressive Spinal codes [28], low-complexity
decoding algorithms [29]–[31], and block assignments for
timeliness-oriented Spinal codes [32], [33]. These advance-
ments have notably improved the performance of Spinal
codes. However, a comprehensive theoretical analysis of their
mechanisms remains a challenge and an area that is under-
researched. Within the broader domain of channel coding,
the analysis of error probability bounds remains a critical
focus, encompassing studies on Raptor codes [34], Polar
codes [35], [36], and LT codes [37], [38], as well as on the
error probability of Maximum Likelihood (ML)-decoded linear
codes [39]. The theoretical exploration of emerging techniques
like Spinal codes, however, is still in its early stages.

B. Related Works and Contributions

The first work analyzing the performance of Spinal codes
was conducted by their creator, as detailed in [3]. This semi-
nal work presented an asymptotic rate performance analysis
of Spinal codes, theoretically demonstrating their capacity-
achieving properties over both the AWGN channel and the
BSC. Subsequently, in [2], Yu et al. extended this asymptotic
analysis to finite block-length (FBL) analysis and analyzed
the upper bound on the error probability of Spinal codes.
This analysis considered the tree structure of Spinal codes and
applied existing bounding techniques for pairwise independent
random codes, specifically the Random Coding Union (RCU)
bound and the 1965 Gallager random coding bound to derive
the upper bound on Spinal codes. However, the reliance on
these bounds may not fully reflect the unique properties of
Spinal codes, potentially leading to less precise evaluations.

In our previous works [22], [23], we established an upper
bound on the BLER of Spinal codes over Rayleigh fading
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channels. This analysis utilized the union bound of proba-
bility, the Chernoff bound, and the geometric probability for
bounding the BLER of Spinal codes. However, the application
of the Chernoff bound resulted in derived bounds that were
not in a strictly closed form. Instead, these bounds exhibited
probabilistic convergence, indicating that they are valid with
a confidence probability less than one.

Motivated by the above, this work aims to address an essen-
tial yet unexplored question: Is it possible to explore Spinal
codes’ intrinsic properties more deeply to obtain precise,
closed-form error probability bounds over the AWGN channel,
without resorting to the 1965 Gallager random coding bound?
Central to this challenging problem, the main contributions of
this paper are two rigorously closed-form upper bounds on the
error probability of Spinal codes over the AWGN channel. We
conduct Monte Carlo simulations to verify that our proposed
bounds are tighter. Furthermore, we provide a theoretical proof
that our explicit bounds 1 exhibit improved tightness compared
to the explicit bound in [2, Theorem 4]. Potential applications
of the bound are explored in the paper.

II. PRELIMINARIES OF SPINAL CODES

A. Coding Process of Spinal Codes

hash hash hash

RNG RNG RNG RNG

Constellation Mapper: 

Pass 1

Pass 1

Pass 

Step 1

Step 2

Step 3

Step 4

Message 

Fig. 1. The encoding process of Spinal codes.

Fig. 1 illustrates the encoding process of Spinal codes:

1) An n-bit message M is divided into k-bit segments,
denoted by mi, where i = 1, 2, . . . , n/k.

2) An iterative process is invoked to generate v-bit spine
values si ∈ {0,1}v:

si = h(si−1,mi), i = 1, . . . , n/k, s0 = 0v.1 (1)

3) The v-bit spine value si serves as a seed of an RNG to
generate a pseudo-random uniform-distributed sequence
{xi,j}:

RNG :si→{xi,j} ,xi,j ∈ {0,1}c, j = 1, 2, 3, · · · , (2)

1The initial spine value s0 is known to both the encoder and the decoder.
Without loss of generality, we set s0 = 0v in this paper.

4) The constellation mapper maps each c-bit symbol to a
channel input set Ω:

f : xi,j→Ω, (3)

where f is a constellation mapping function and Ω
denotes the channel input set.

In general, Spinal codes exhibit the following important
features that contribute to their performance superiority:

Lemma 1. (Pairwise independent property) As Perry et al.
indicat in [5], the hash function employed by Spinal codes
should have pairwise independent property:

Pr {h (s,m) = x, h (s′,m′) = x′}
= Pr {h (s,m) = x} · Pr {h (s′,m′) = x′}
= 2−2v,

(4)

where (s,m) and (s′,m′) are two different inputs of the hash
function. This characteristics is crucial for the BLER analysis.

Definition 1. A hash collision occurs when two different inputs
of the hash function produce the same output, i.e., h(s,m) =
h(s′,m′) while (s,m) 6= (s′,m′).

Corollary 1. The probability of hash collisions de-
creases exponentially with the hash parameter v, i.e.,
Pr {h (s,m) = h (s′,m′)} = 2−v , where (s,m) and (s′,m′)
are two different inputs.

Proof. See Appendix A. �

B. ML Decoding Process of Spinal Codes
The ML decoding rule for Spinal codes is:

M̂ ∈ arg min
M′∈{0,1}n

D(M′), (5)

where D(M′) is the decoding cost defined as:

D(M′) ,
n/k∑
i=1

L∑
j=1

(yi,j − f (xi,j(M
′))2, (6)

with yi,j = f(xi,j(M
′)) + ni,j representing the received

symbols over the AWGN channel, M̂ representing the de-
coding result, M′ representing the candidate sequence, and L
denoting the number of transmitted passes for Spinal codes. In
ML decoding, the ML decoder adopts i) the shared knowledge
of the same hash function, ii) the same initial spine value s0

and iii) the same RNG to replay the coding process over the
candidate sequences set {0, 1}n.

C. Upper Bounds Based on 1965 Gallager Random Coding
Bound

This subsection reviews the BLER analysis for Spinal codes
presented in [2]. In this work, the analysis employs the 1965
Gallager Random Coding Bound, with a specific substitution
ρ = 1 as one of the core steps to obtain the bound. The bound
in [2] is given in the following Theorem.

Theorem 1. (Restatement of [2, Theorem 4]) Consider Spinal
codes with message length n and segmentation parameter k
transmitted over an AWGN channel with noise variance σ2.
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Let L be the number of transmitted passes. The average BLER
under ML decoding can be upper bounded by

Pe ≤ 1−
n/k∏
a=1

(1− εa), (7)

with
εa = exp

{
−La ·

[
Eo(Q)− lnUa

La

]}
, (8)

where La = L(n/k − a + 1), Ua = 2k(n/k−a+1), Q denotes
the probability distribution of the channel input and

E0 (Q) = − ln

{
1√

2πσ2
×

∫
R

(∑
x∈Ω

Q (x) · exp

(
− (y − x)

2

4σ2

))2

dy

}
,

(9)
where Ω is the channel input set.

In the proof of Theorem 1, the 1965 Gallager random
coding bound [1, Theorem 5.6.2] is employed, which is
Pe ≤ exp{−L · Er(R)}, with

Er(R) = max
0≤ρ≤1

(Eo(Q, ρ)− ρR) (10)

and

Eo(Q, ρ) = − ln


∫
R

[∑
x∈Ω

Q(x)P (y | x)1/(1+ρ)

]1+ρ

dy

 .

(11)
However, it is hard to explicitly calculating E0(Q, ρ), making
the determination of Er(R) challenging. To address this, the
authors in [2] resorted to a relaxed variant to establish (8):

Pe ≤ exp

{
−L ·

[
max

0≤ρ≤1
(E0(Q, ρ)− ρR)

]}
= min

0≤ρ≤1
{exp [−L · (E0(Q, ρ)− ρR)]}

≤ exp{−L · (E0(Q)−R)},

(12)

where E0(Q, 1) = E0(Q) and R = lnUa
La

. In (12), the
second inequality derives from that for any functions f(·),
the inequality min0≤ρ≤1f(ρ) ≤ f(1) always holds true. The
bound (12) leads to the bound (8) in Theorem 1.

When applying the 1965 Gallager random coding bound,
the authors in [2] set ρ as 1 to upper bound E(Q, ρ) and
Er(R). However, the right-hand side (RHS) of (9) involves
integrating the square of a summation, which still presents
calculation complexity. Consequently, we here refine the inner
integration within (9) and express it as more compact form:

(see Appendix B for the detailed proof)

E0(Q) = − ln

2−2c ×
∑
j∈Ω

∑
i∈Ω

exp

(
− (i− j)2

8σ2

) . (13)

With (13), E0(Q) can be determined by calculating the
logarithm of the summation exp{− (i−j)2

8σ2 } over i, j ∈ Ω.

III. BOUND BASED ON GEOMETRIC PROBABILITY

The purpose of this work is to tighten the bound illustrated
in [2]. Since the bound in [2] applies an relaxed variant of
the 1965 Gallager random coding bound [1, Theorem 5.6.2]
Pe ≤ 2−L·(E(Q,ρ)−ρR) by substituting ρ = 1, one straightfor-
ward way to tighten the bound is to eliminate the relaxation
min0≤ρ≤1f(ρ) ≤ f(1) and explicitly derive Er(R) in a closed
form. However, this poses significant challenges. As noted
in [1, Example 1, Page 146], “Even for a simple channel
like the binary symmetric channel, there is no simple way to
express Er(R) except in parametric form.” This impedes the
development of tight explicit bounds for Spinal codes.

In this paper, we bypass the necessity for the 1965 Gallager
random coding bound and reestablish a tighter upper bound.
We establish the first bound on BLER of Spinal codes through
the geometric probability [40]. Through this approach, we
transform a conditional probability into the ratio of volumes
of two hyper geometric objects (see Fig. 2 and Lemma 3). The
explicit bound based on this technique is outlined in Section
III-A with a proof provided in Section III-B.

A. Explicit Upper Bound on BLER

Theorem 2. (Bound based on geometric probability) Consider
Spinal codes with message length n, segmentation parameter
k, modulation parameter c, and sufficiently large hash param-
eter v transmitted over an AWGN channel with SNR γ. The
average BLER under ML decoding for Spinal codes can be
upper bounded by

Pe ≤ 1−
n/k∏
a=1

(1− εa), (14)

with

εa = min
{

1,
(
2k − 1

)
2n−ak ·F (La, γ)

}
, (15)

and

F (La, γ) =
πLa/2LaH (La, γ)

Γ2
(
1 + La

2

) (√
24γ
)La +

LaG (La, γ)

Γ
(
1 + La

2

) (√
2
)La ,
(16)

where La , L · (n/k − a + 1) represents the cumulative
transmitted symbols from the ath segment to the (n/k)

th

G (La, γ) =

{
exp

[−β2(La,γ)
2

]∑La/2
i=1 β (La, γ)

La−2iKi−1, if La is even

σLa
(√

2πQ (β (La, γ))K(La−3)/2 + exp
[−β2(La,γ)

2

]∑(La−1)/2
i=1 β (La, γ)

La−2iKi−1

)
, if La is odd

,

(18)

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2024.3435391

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 02,2024 at 00:57:05 UTC from IEEE Xplore.  Restrictions apply. 



4

segment, H (La, γ) is given as

H (La, γ) = −e
−β(La,γ)2

2

La∑
i=1

β (La, γ)
2(La−i)Ii−1 + ILa−1,

(17)
G (La, γ) is given in (18) at the bottom of this page, with

β (La, γ) =

√
12γ

π
Γ(1 + La/2)

1/La . (19)

In the above expressions, Γ(·) denotes the Gamma function,
Ii is defined as Ii ,

∏i
j=1 2 (La − j), and Ki is given by

Ki ,
∏i
j=1 (La − 2j).

B. Proof of Theorem 2
Theorem 2 establishes an explicit bound on ML-decoded

Spinal codes. To derive this bound, we first decompose the
BLER Pe into products of conditional error probabilities, as
detailed in Section III-B1. We then explore the geometric
interpretations of these conditional error probabilities using a
geometric probability in Section III-B2, where we demonstrate
that the conditional error probability can be represented by
the ratio of volumes of two specific geometric objects. Third,
we recognize that to explicitly solving the volume of the
hyper geometric object is non-trivial, and thus we upper bound
the volume in Section III-B3. Finally, we employ Gaussian
integration to explicitly calculate the bound in Section III-B4.

1) Pe Decomposition:
Denote Ea as the event that there exists a decoding error in

the ath segment of Spinal codes and Ēa as the complement of
Ea. The BLER of Spinal codes can be decomposed through
the multiplication rule of probability:

Pe = Pr


n/k⋃
a=1

Ea

 = 1− Pr


n/k⋂
a=1

Ēa


= 1−

n/k∏
a=1

1− Pr

Ea
∣∣∣∣∣∣
a−1⋂
j=1

Ēj


 .

(20)

For concise notations, denote εa as the conditional probability

εa = Pr

Ea
∣∣∣∣∣∣
a−1⋂
j=1

Ēj

 . (21)

Our primary objective is to formulate an explicit upper bound
on εa, thus establishing the upper bound on Pe.

2) Upper Bound εa: A Geometric Probability Approach
Suppose message M =

(
m1,m2, . . . ,mn/k

)
∈ {0, 1}n

is encoded to Spinal codewords f (xi,j (M)) for transmission
over an AWGN channel. Let yi,j denote the corresponding
received symbol at the receiver, and denote ni,j as the
AWGN with variance σ2. The received symbol is yi,j =
f (xi,j(M)) +ni,j . Define Wa ,

{
(m′1, . . . ,m

′
n/k) : m′1 =

m1, . . . ,m
′
a−1 = ma−1,m

′
a 6= ma

}
as the set of messages

where the first a−1 segments are identical to those of M, but
the a-th segment differs.

From the ML decoding rule given in (5), we know that a

conditional error occurs when a candidate sequence M′ ∈ Wa

exists such that its decoding cost D(M′) is lower than
the correct sequence’s decoding cost D(M), i.e., ∃M ∈
Wa,D(M′) < D(M). Thus, the conditional probability εa
is expressed as

εa = Pr

Ea
∣∣∣∣∣∣
a−1⋂
j=1

Ēj

 = Pr {∃M′ ∈ Wa : D (M′) ≤ D (M)} .

(22)
Applying the union bound of probability yields:

Pr {∃M′ ∈ Wa : D (M′) ≤ D (M)}

≤ min{1,
∑

M′∈Wa

Pr {D (M′) ≤ D (M)}}, (23)

where
∑

M′∈Wa
Pr {D (M′) ≤ D (M)} can be expanded by

substituting the definition of D(·) in (6):

∑
M′∈Wa

Pr


n/k∑
i=1

L∑
j=1

(yi,j − f (xi,j (M′)))2 ≤
n/k∑
i=1

L∑
j=1

n2
i,j

 .

(24)
Next, we simplify (24) through the following Lemma.

Lemma 2. The following assertions are true:
(i). If 1 ≤ i < a and M′ ∈ Wa, we have yi,j −
f (xi,j (M′)))2 = n2

i,j .
(ii). If a ≤ i ≤ n/k and M′ ∈ Wa, then f (xi,j (M′)) is
independent with yi,j .

Proof. See Appendix C. �

In Lemma 2, the assertion (i) simplifies (24) as:

∑
M′∈Wa

Pr


n/k∑
i=a

L∑
j=1

(yi,j − f (xi,j (M′)))2 ≤
n/k∑
i=a

L∑
j=1

n2
i,j

 .

(25)
We next show that the assertion (ii) of Lemma 2 enables

us to employ geometric probability for analyzing the RHS of
(25). By introducing yLa as the vector comprising yi,j with
a ≤ i ≤ n/k, 1 ≤ j ≤ L, XLa (M′) as the vector comprising
f (xi,j (M′)), and NLa as the vector comprising ni,j with a ≤
i ≤ n/k, 1 ≤ j ≤ L, where La = L(n/k − a + 1), (25) can
be then expressed in a vector form:

∑
M ′∈Wa

La︷ ︸︸ ︷∫
R
· · ·
∫
R

Pr
{∥∥yLa −XLa (M′)

∥∥2 ≤

∥∥nLa∥∥2 ∣∣NLa = nLa
} n/k∏
i=a

Pr(NLa = nLa)dnLa . (26)

The results from geometric probability is summarized in the
following Lemma.

Lemma 3. The conditional probability in (26), given as
Pr{‖yLa −XLa(M′)‖2 ≤ ‖nLa‖2|NLa = nLa}, can be ap-
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Unifomly

Distributed in

the Hypercube

Fig. 2. A three-dimension (3D, La = 3) example of the relationship among
XLa (M), XLa (M′), NLa and yLa (M).

proximated through the geometric probability, given as

Vol
[
SLa

(
yLa (M) , ‖nLa‖

)⋂
CLa (2c − 1)

]
Vol (CLa (2c − 1))

, (27)

where Sn (yn, r) ,
{
xn = (x1, · · · , xn) ∈ Rn|‖xn−yn‖2 ≤

r2
}

, Cn (l) ,
{
xn = (x1, · · · , xn) ∈ Rn|0 ≤ xi ≤ l, for i ∈

[n]
}

2, and Vol (x) represents the volume of the object x.

Proof. From the assertion (ii) of Lemma 2, it turns out that
XLa(M′) is independent of yLa . In this way, given a known
yLa , each element in XLa(M′) follows the uniform distribu-
tion with f (xi,j (M′)) ∼ Uniform[0, 2c − 1]. This indicates
that the vector XLa (M′) is uniformly distributed in an La-
dimension hypercube, as shown in Fig. 2. As such, the proba-
bility Pr

{
‖yLa −XLa (M′) ‖2 ≤ ‖nLa‖2

∣∣NLa = nLa
}

can
be approximated as the volume of the intersection region
between a La-dimension hypercube CLa (2c − 1) and a La-
dimension hypersphere SLa

(
yLa (M) , ‖nLa‖

)
, divided by

the volume of the hypercube CLa (2c − 1). �

3) Upper Bound the Ratio (27)
Lemma 3 reinterprets the probability into volumes of two

hyper objects: (i) the intersection of the hypersphere and
the hypercube SLa

(
yLa (M) , ‖nLa‖

)⋂
CLa (2c − 1); (ii) the

hypercube CLa (2c − 1). Solving the volume of the intersec-
tion is non-trivial, and we thus establish an upper bound for
it instead in the following.

As the volume of the intersection part does not sur-
pass their individual volumes, i.e., Vol(A) ∩ Vol(A) ≤
min {Vol(A),Vol(B)}, we establish the bound:

Vol
[
SLa

(
yLa (M) , ‖nLa‖

)⋂
CLa (2c − 1)

]
Vol (CLa (2c − 1))

≤
min

{
Vol

(
SLa

(
yLa (M) , ‖nLa‖

))
,Vol

(
CLa (2c − 1)

)}
Vol (CLa (2c − 1))

= min

{
Vol

(
SLa

(
yLa (M) , ‖nLa‖

))
Vol (CLa (2c − 1))

, 1

}
. (28)

Then, substituting the following volume expressions

Vol (Sn (yn, r)) =
πn/2

Γ
(
1 + n

2

)rn,Vol (Cn (l)) = ln (29)

2The notation [n] is employed as a shorthand to represent the set
{1, · · · , n}.

into the RHS of (28) yields

Vol
(
SLa

(
yLa (M) , ‖nLa‖

))
Vol (CLa (2c − 1))

=

(
π
∑n/k
i=a

∑L
j=1 n

2
i,j

)La/2
(2c − 1)

LaΓ
(
1 + La

2

) .

(30)
Applying (27)-(30) in (26) yields an explicit bound on εa:

εa ≤ min

{
1,

∑
M′∈Wa

∫
· · ·
∫
R︸ ︷︷ ︸

La

min

(
1,

(
π
∑n/k
i=a

∑L
j=1 n

2
i,j

)La/2
(2c − 1)

LaΓ
(
1 + La

2

) )
×

1(√
2πσ2

)La e−∑n/ki=a

∑L
j=1 n

2
i,j

2σ2

n/k∏
i=a

L∏
j=1

dni,j

}
.

(31)

4) Closed-Form Solution to (31)

Our remaining focus is to solve the La-dimension integral
on the RHS of (31). To address this challenge, we introduce
hyperspherical coordinates and Gaussian integrals (refer to
Appendix D) to simplify (31). The closed-form solution to
(31) is outlined in Lemma 4.

Lemma 4. The La-dimension integral in (31) can be rewritten
as an analytical function of La and SNR γ, denoted by
F (La, γ) given as:

F (La, γ) =
πLa/2LaH (La, γ)

Γ2
(
1 + La

2

) (√
24γ
)La +

LaG (La, γ)

Γ
(
1 + La

2

) (√
2
)La ,
(32)

where the closed-form expressions of functions H (La, γ) and
G (La, γ) are given in (17)-(19).

Proof. See Appendix D. �

Substituting the explicit function F (La, γ) into (31) yields
an closed-form upper bound on εa:

εa ≤ min

{
1,

∑
M′∈Wa

F (La, γ)

}
= min {1, |Wa| ·F (La, γ)}
= min

{
1,
(
2k − 1

)
2n−ak ·F (La, γ)

}
.

(33)

As last, applying the bound on εa in (20) results in the upper
bound on Pe outlined in Theorem 2.

IV. BOUND BASED ON CRAIG’S IDENTITY AND RULE OF
RIEMANN RIGHT SUM

We observe that the the bound in Theorem 2 only achieves
tight approximations under the high-SNR regime (See Section
VI). This limitation motivates us to investigate the causes of
this phenomenon. Subsequently, we provide an explanation for
the limited accuracy of Theorem 2 in the low-SNR regime.
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Fig. 3. An example where the bound (28) is overestimated.

Consider a scenario where the encoded symbol vector
XLa(M) is at the boundary of the hypercube and the noise
is very large, as shown in Fig. 3. In this case, the bound (28),
which uses the volume of the hypersphere to upper bound
the volume of the intersection, is significantly overestimated.
This overestimation is prevalent under conditions of large
noise, resulting in a reduced accuracy of the bound in low
SNR regimes. To address the dynamics of XLa(M) and the
resulting overestimation under low-SNR regime, we propose
new analytical methods in this section.

In summary, this section establishes a new bound that
incorporates the random dynamics of XLa(M). The key
of the bound lies in the Craig’s Identity Q (x) =
1
π

∫ π
2

0
exp

(
−x2

2 sin2 θ

)
dθ [41] and the Rule of Right Riemann

Sum. The explicit bound is detailed in the subsequent theorem.

A. Explicit Upper Bound on BLER
Theorem 3. (Bound Based on Craig’s Identity and Rule of
Riemann Right Sum) Consider Spinal codes with message
length n, segmentation parameter k, modulation parameter c,
and sufficiently large hash parameter v transmitted over an
AWGN channel with variance σ2. The average BLER under
ML decoding can be upper bounded by

Pe ≤ 1−
n/k∏
a=1

(1− εa), (34)

with

εa = min
{

1,
(
2k − 1

)
2n−ak ·F2 (La, σ)

}
, (35)

F2 (La, σ) =

N∑
r=1

biF (θr;σ, La) , (36)

F (θr;σ, La) =

2−2c ×
∑
j∈Ω

∑
i∈Ω

exp

(
− (i− j)2

8σ2 sin2 θr

)La ,
(37)

where F (0;σ, La) , 0, La = L(n/k− a+ 1), bi = θr−θr−1

π ,
θi is arbitrarily chosen with 0 = θ0 < θ1 < θ2 · · · <
θN−1 < θN = π

2 , and N is the maximum subscript of θi,
which can serve as an flexible accuracy parameter (A detailed
explanation of N is given in Example 1).

Example 1. When N = 1, the maximum subscript of θi is 1,
and we have θ0 = 0, θ1 = π

2 . In addition, we can explicitly
calculate

F
(
θ0;σ, La

)
= 0, b1 =

1

2
, (38)

F
(
θ1;σ, La

)
= [2−2c ×

∑
j∈Ω

∑
i∈Ω

exp

(
− (i− j)2

8σ2

)
]La . (39)

This leads to the closed-form expression:

F2 (La, σ) =
1

2
·

2−2c ×
∑
j∈Ω

∑
i∈Ω

exp

(
− (i− j)2

8σ2

)La .
(40)

Substituting F2 (La, σ) into (35) leads to an explicit bound.

B. Proof of Theorem 3

The change of the proof initiates with (25). Substitute
yi,j = f (xi,j (M)) + ni,j into (25), and the probability
Pr (D (M′) ≤ D (M)) is reformulated as

Pr

n/k∑
i=a

L∑
j=1

[f (xi,j (M)) + ni,j − f (xi,j (M′))]
2 ≤

n/k∑
i=a

L∑
j=1

n2
i,j

 .

(41)
In what follows we simplify (41) into a vector form.

1) Vector Form of (41)

Define Gi,j , f (xi,j (M))− f (xi,j (M′)), (41) turns to:

Pr

n/k∑
i=a

L∑
j=1

f (xi,j (M))− f (xi,j (M′))︸ ︷︷ ︸
Gi,j

+ ni,j


2

≤
n/k∑
i=a

L∑
j=1

n2
i,j


= Pr

n/k∑
i=a

L∑
j=1

G2
i,j + 2

n/k∑
i=a

L∑
j=1

Gi,jni,j ≤ 0

 .

(42)
Denote G as the vector consisted of {Gi,j}j∈[L]

a≤i≤[n/k].

Since G · GT =
∑n/k
i=a

∑L
j=1G

2
i,j and G · [NLa ]T =∑n/k

i=a

∑L
j=1Gi,jni,j , the RHS of (42) turns to

Pr
(
G
(
G + 2NLa

)T ≤ 0
)
. (43)

Lemma 2 illustrates the independence between G and NLa .
Thus, (43) turns to∑

g

Pr
(
g
(
g + 2NLa

)T ≤ 0
)
· Pr (G = g) . (44)

2) Closed-Form Solution to (44)

We next show that both Pr
(
g
(
g + 2NLa

)T ≤ 0
)

and
Pr (G = g) can be transformed to a parametric form.

We first analyze Pr
(
g
(
g + 2NLa

)T ≤ 0
)

. Fig. 4 indicates
that the condition g(g + 2NLa)T ≤ 0 is identical to that the
projection of 2NLa onto g, projg2NLa , is in the opposite
direction to the vector g, and |projg2NLa | ≥ |g|. This insight
is formally formulated in the following lemma.
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Fig. 4. Geometric relationships among g, NLa , g+2NLa , and projg2N
La .

It is demonstrated that g
(
g + 2NLa

)T ≤ 0 implies that the projection
projg2N

La is in the opposite direction to the vector g. Additionally, its
magnitude satisfies that |projg2NLa | ≥ |g|.

Lemma 5. The following equivalence holds true:

g
(
g + 2NLa

)T ≤ 0⇔ projg2NLa = kg, k ≤ −1. (45)

Proof. On the one hand, the condition g
(
g + 2NLa

)T ≤ 0

indicates that 2NLagT

ggT ≤ −1. On the other hand, we have

the definition of the projection projg2NLa , 2NLagT

ggT · g.
Combining these two proposition accomplishes the proof. �

By applying Lemma 5, we transform the primal condition
g(g+2NLa)T ≤ 0 on NLa into a condition on the projection
random vector projg2NLa : projg2NLa = kg, k ≤ −1.
Because a projection of a Gaussian random vector is another
Gaussian random vector, we establish the hypothesis that
Pr
(
g(g + 2NLa)T ≤ 0

)
= Q(‖g‖2σ ). In the following Lemma,

we formally establish this relationship.

Lemma 6. If NLa is a Gaussian random vector, then
Pr
(
g(g + 2NLa)T ≤ 0

)
= Q(‖g‖2σ ), where Q(·) is the Q

function.

Proof. See Appendix E. �

Next, we analyze Pr {G = g}. Because G = XLa(M) −
XLa(M′), where XLa(M) and XLa(M′) is independent with
each other (see Appendix C-B), we can apply Lemma 6 and
rewrite (44) as:∑
i∈ΩLa

∑
j∈ΩLa

Q

(
‖i− j‖

2σ

)
· Pr

(
XLa(M) = i

)
· Pr

(
XLa(M′) = j

)
,

(46)
where XLa(M) and XLa(M′) are both uniformly distributed
vectors with

Pr
(
XLa(M) = i

)
= 2−c·La , (47)

Pr
(
XLa(M′) = j

)
= 2−c·La . (48)

Then, (46) is written in a compact form:∑
i∈ΩLa

∑
j∈ΩLa

Q

(
‖i− j‖

2σ

)
· 2−2cLa . (49)

3) Upper Bound (49) Through Carig’s Identity and Rimann
Right Sum

We next establish an explicit upper bound on (49). The core
idea is based on Carig’s Identity [41] and the Rule of Rimann
Right Sum. The Craig’s Identity is [41]

Q (x) =
1

π

∫ π
2

0

exp

(
−x2

2 sin2 θ

)
dθ. (50)

Applying (50) in (49) yields

1

π

∫ π
2

0

2−2c
∑
i∈Ω

∑
j∈Ω

exp

(
− (i− j)2

8σ2 sin2 θ

)La

dθ. (51)

Explicitly solving the integral in (51) is challenging. We
instead leverage the Riemann Sum rule to establish an explicit
upper bound. Denote the integrand in (51) as

F
(
θ;La, σ

)
=

2−2c
∑
i∈Ω

∑
j∈Ω

exp(
− (i− j)2

8σ2 sin2 θ
)

La

. (52)

Note that F
(
θ;La, σ

)
satisfies

F
(
0;La, σ

)
= 0,

dF
(
θ;La, σ

)
dθ

> 0, for ∀0 < θ < π/2.

(53)
We can apply the Rule of Right Riemann Sum to upper bound
F
(
θ;La, σ

)
. Specifically, we can arbitrarily choose a partition

of [0, π2 ], given as (θ0, θ1, · · · , θN ) such that 0 = θ0 < θ1 <
θ2 < · · · < θN−1 < θN = π/2 to explicitly upper bound the
integral:

1

π

∫ π
2

0

F (θ;La, σ) dθ =

N∑
r=1

1

π

∫ θr

θr−1

F (θ;La, σ) dθ

≤ 1

π

N∑
r=1

(θr − θr−1) · F (θr;La, σ) . (54)

Denote br = θr−θr−1

π , the RHS of (54) turns to

N∑
r=1

br · F (θr;La, σ) , (55)

which is the definition of function F2 (La, σ) given in (36).
Then, similar to (33), we have the bound as:

εa ≤ min
{

1,
(
2k − 1

)
2n−ak ·F2 (La, γ)

}
. (56)

We thus obtain the bound in Theorem 3.

V. APPLICATIONS OF THE BOUND

In this section, we introduce several applications of the
bound, providing practical examples to demonstrate insights
into effective coding design.

Example 2. (Constellation Mapping Design) One potential
applications of the bound is to guide the design of constella-
tion mapping. For Spinal codes, we formulate the following
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Fig. 5. Comparison of bounds and Monte Carlo simulations. Parameters are set as n = 8, k = 2, c = 6 and v = 32.

optimization problem for the constellation mapping design:

min
Ω
Pe, s.t. E(x2) ≤ P,where x ∈ Ω, (57)

which minimize the error probability under a power constraint.
For a given c, which determines the size of the channel input
set Ω as N = 2c, we can rewrite the above problem as

min
x1,··· ,xN

Pe, s.t.
1

N

N∑
i=1

x2
i ≤ P, (58)

where xi ∈ Ω, i ∈ {1, 2, · · · , N}. Pe is difficult to be explicitly
solved, so we can minimize the upper bound of Pe instead
for the design. Take the bound given in Example 1 as an
example, it is easy to verify from (40) that the BLER upper
bound minimization problem is equivalent to:

min
x1,··· ,xN

N∑
j=1

N∑
i=1

exp

(
− (xi − xj)2

8σ2

)
, s.t.

1

N

N∑
i=1

x2
i ≤ P

(59)
We then introduce the Lagrange function L(x1, · · · , xN , λ) for
the problem. The Lagrange function is given as

N∑
j=1

N∑
i=1

exp

(
− (xi − xj)2

8σ2

)
+
λ

N

N∑
i=1

x2
i − λP. (60)

The problem is equivalent to ensure that

dL
dλ

=
1

N

N∑
i=1

x2
i − P = 0, (61)

dL
dxi

= −
N∑
j=1

xi − xj
4σ2

exp

(
− (xi − xj)2

8σ2

)
+

2λxi
N

= 0.

(62)

We can then apply the iteration

x
(k+1)
i = x

(k)
i − α

dL
dx

(k)
i

, i ∈ {1, · · · , N},

λ(k+1) = λ(k) − β dL
dλ(k)

,

(63)

to numerically solve (61), where α and β are predefined step
size, and the iteration stops when the gradients are below to
a predefined threshold ε with dL

dx
(k)
i

< ε and dL
dλ(k) < ε.

Example 3. (Error Floor Prediction) The BLER analysis
enables us to predict the presence of an SNR floor for Spinal
codes. This indicates that the BLER will not decrease further,
even as the SNR of Spinal codes increases. Specifically, from
Theorem 3 we can know that

lim
σ→0
F(θr;σ, La) =

2−2c
∑
i=j∈Ω

exp

(
− (i− j)2

8σ2 sin2 θr

)La
=
[
2−2c · 2c

]La
= 2−cLa .

(64)
This indicates that an infinitely large SNR does not lead to
an arbitrarily small F(θr;σ, La), and thus does not lead to
an arbitrarily small BLER. This phenomenon is called error
floor in coding theory. Furthermore, we can know from (64)
and La = L(n/k − a + 1) that an increase of c, n/k, or L
will decrease the error floor of Spinal codes.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, we employ Monte Carlo simulations to
validate the accuracy of our derived bound. In addition, we
theoretically establish that our proposed bounds are tighter
than previous results in [2].
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Fig. 6. Comparison of bounds and Monte Carlo simulations. Parameters are set as n = 12, k = 3, c = 6 and v = 32.

A. Observations and Verification
Fig. 5 and Fig. 6 illustrate the bound in [2], the developed

Theorem 2 and Theorem 3 in this paper, and Monte Carlo
simulation results. Due to the exponential complexity of ML-
decoding in terms of n, we select (n, k) = (8, 2) and (n, k) =
(12, 3) here for a feasible simulation to verify our theoretical
results. Fig. 5 compares the results under (n, k) = (8, 2), and
Fig. 6 is under (n, k) = (12, 3). The Monte Carlo simulations
are conducted to approximate the average error probability,
where c = 6 and v = 32 are chosen to verify our theoretical
results3. The number of transmitted passes is set as L = 6 and
L = 8 for the simulation setup4.

From Fig. 5 and Fig. 6, we can obtain two insights: (i) Our
proposed Theorem 2 yields tighter approximations in high-
SNR scenarios compared to the bound in [2]. The reasons
for this phenomenon are shown in Fig. 3: When the encoded
symbol vector XLa(M) is close to the hypercube’s boundary,
bounding the intersection volume as the hypersphere volume
can be overestimated especially when |NLa | is large. Hence,
the upper bound in (28) tends to 1 under low SNR, and
demonstrates tight approximations under high SNR; (ii) Our
derived Theorem 3 maintains its tightness over a wide range
of SNR. This is because Theorem 3 addresses the difficulty
in approximating BLER under low-SNR by considering the
randomness of XLa(M). In addition, by choosing N = 20, the
Rule of Riemann Right Sum can accurately approximate the
integral in (51). Our derived bounds achieve uniform tightness
under a wide range of SNR and different parameter setup.

Fig. 7 demonstrates the convergence curve and BLER
comparisons among the constellation mapping designs. The

3This is a general parameter setup for Spinal codes [5].
4Different parameters are chosen to verify the robustness of the derived

bounds.

left panel is the convergence curve of our proposed iteration
algorithm. It shows that the proposed algorithm is able to
achieve zero gradient of the Lagrange function L, which
successfully solves the constellation mapping design under
power constraints. The right panel compares our proposed con-
stellation mapping design with two benchmark constellation
mappings of Spinal codes:

• Uniform: the channel input set is established by [5,
Section 3.3], given as

Ω =

{
b+ 1

2

2c
− 1

2
: b = 0, 1, · · · , 2c − 1

}
. (65)

• Truncated Gaussian: the channel input set is established
by [5, Section 3.3], given as

Ω =

{
Φ−1

(
β +

(1− 2β)(b+ 1
2 )

2c

)
: b = 0, · · · , 2c − 1

}
.

(66)

It is demonstrated that the uniform constellation achieves better
BLER performance under high SNR regime, whereas the
truncated Gaussian constellation achieves better BLER per-
formance under low SNR regime. Our proposed constellation
mapping scheme, termed as “Optimal” in the figure, achieves
the best BLER performance over the wide range of BLER.

B. Theoretical Implications
It has been observed from the previous subsection that the

proposed Theorem 3 achieves uniform tightness over a wide
range of SNR. This subsection delves into the theoretical
implication to explore why our proposed result Theorem 3
achieves greater tightness compared to the result resorting to
the 1965 Gallager random coding bound [2].

In what follows we theoretically establish the tightness of
Theorem 3 in two steps. First, we prove that the bound when
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N = 1, as shown in Example 1, is the most relaxed version of
the bound in Theorem 3. This is formulated in the following
Lemma.

Lemma 7. For any N , 0 = θ0 ≤ θ1, · · · , θN−1 ≤ θN = π/2,
the parameter setup with N = 1 is the most relaxed bound of
Theorem 3.

Proof. From (53) we know that for any θr ≤ θN ,
F(θr;La, σ) ≤ F(θr;La, σ). Substituting this inequality into
the RHS of (54) yields that, for any θr, 0 ≤ r ≤ N ,

1

π

N∑
r=1

(θr − θr−1) · F (θr;La, σ) ≤ θN
π
· F (θN ;La, σ)

=
1

2
· F
(π

2
;La, σ

)
(67)

Because the RHS of (67) is equal to the RHS of (36) when
N = 1, we thus accomplish the proof. �

Then, we prove that even the worst case of Theorem 3 is
tighter than the bound presented in Theorem 1. Denote the
bound on Pr

{
Ea
∣∣∣⋂a−1

j=1 Ēj
}

in Theorem 1 as ε̄a and the
bound in Example 1 as ¯̄εa. We establish the following lemma.

Lemma 8. The inequality ¯̄εa < ε̄a holds true.

Proof. Substituting the simplified E0(Q) in (13) into (8), we
rewrite ε̄a as

ε̄a = 2k(n/k−a+1) ·

2−2c ×
∑
j∈Ω

∑
i∈Ω

exp

(
− (i− j)2

8σ2

)La

.

(68)
In Example 1, it has been derived that F2 (La, σ) = 1

2 ·[
2−2c ×

∑
j∈Ω

∑
i∈Ω exp

(
− (i−j)2

8σ2

) ]La . Consequently, ε̄a
can be simplified as 2k(n/k−a+1)+1 ·F2 (La, σ). ¯̄εa is given

as min
{

1,
(
2k − 1

)
2n−ak ·F2 (La, σ)

}
. This indicates that

¯̄εa ≤
(
2k − 1

)
2n−ak · F2 (La, σ). Subtract ¯̄εa from ε̄a, and

we have that

ε̄a − ¯̄εa ≥ (2k(n/k−a+1)+1 −
(
2k − 1

)
2n−ak) ·F2 (La, σ)

= 2n−ak · (2k+1 − 2k + 1) ·F2 (La, σ)

= 2n−ak · (2k + 1) ·F2 (La, σ) > 0.
(69)

Thus we establish that ¯̄εa < ε̄a. �

Additionally, Fig. 5 demonstrates that our proposed bound
in Theorem 2 is tighter than the bound in [2] under high-
SNR regime. Subsequently, we reveal this relationship by
discussing the asymptotic tightness of our proposed bound
given in Theorem 2. Denote the bound in Theorem 1 as P (1)

e

and that in 2 as P (2)
e . We establish the following lemma.

Lemma 9. The following asymptotic inequality hold true:

lim
γ→∞

P (2)
e < lim

γ→∞
P (1)
e . (70)

Proof. See Appendix F. �

VII. CONCLUSIONS

This paper has established a new probability framework
to analyze the upper bound on the BLER of ML-decoded
Spinal codes over the AWGN channel. Different from the
conventional reliance on the 1965 Gallager random coding
bound, which might not fully account for the unique attributes
of Spinal codes, we have developed new methods to refine the
analysis. The main results of this paper are two tighter upper
bounds on the BLER of Spinal codes. These bounds have been
validated through simulations, and their improved tightness has
been proved. We have also discussed potential applications of
the bounds that may provide insights for the coding design.

Our findings may also highlight several avenues for future
research. Notably, our error analysis presumes a sufficiently
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large v, neglecting potential hash collisions. Future work
could focus on exploring the balance between coding-decoding
complexity and error probability with respect to v, aiding in
the efficient design of hash functions. Furthermore, applying
these tighter bounds to develop other high-efficiency coding
strategies, such as unequal error protection and concatenation
with outer codes, is an exciting research direction.

APPENDIX A
PROOF OF COROLLARY 1

The corollary is proved through an expansion of
Pr {h (s,m) = h (s′,m′)} and the adoption of Lemma 1:

Pr {h (s,m) = h (s′,m′)}

=
∑

x∈{0,1}v
Pr {h (s,m) = x, h (s′,m′) = x}︸ ︷︷ ︸

2−2v

= 2v · 2−2v = 2−v.

(71)

APPENDIX B
AN APPROACH TO CALCULATE E0 (Q)

For our considered Spinal codes, the channel input set
is Ω = {0, 1, 2, · · · , 2c − 1}, wherein each coded symbol
follows the uniform distribution with Q (x) = 2−c. Applying
this in (9), and we simplify the form of E0(Q) as

− ln

{
1√

2πσ2

∫
R

(∑
i∈Ω 2−c · exp

(
− (y−i)2

4σ2

))2

dy

}
= − ln

{
2−2c
√

2πσ2

∫
R

(∑
i,j∈Ω exp

(
− (y−i)2+(y−j)2

4σ2

))
dy
}

= − ln

{
2−2c
√

2πσ2

∑
j,i∈Ω exp

(
− (i−j)2

8σ2

) ∫
R exp

(
− (y− i+j2 )

2

2σ2

)
dy

}
= − ln

{
2−2c

∑
j∈Ω

∑
i∈Ω exp

(
− (i−j)2

8σ2

)}
. (72)

APPENDIX C
PROOF OF LEMMA 2

A. Proof of Assertion (i)
First, we establish the following Lemma:

Lemma 10. If ∀1 ≤ i < a,mi = m′i, then ∀1 ≤ i < a, si =
s′i.

Proof. We conduct the mathematical induction:
(1) We validate that s0 = s′0. Since s0 is pre-shared across the
transmitter and the receiver as s0 = s′0 = 0v , this validation
is obvious.
(2) We hypothesis that si−1 = s′i−1 is true, and prove ∀1 ≤
i < a, si = s′i. The proof involves revisiting the hash function:

si = h(mi, si−1) = h(m′i, s
′
i−1) = s′i, (73)

where mi = m′i is the condition and si−1 = s′i−1 is the
hypothesis. �

Lemma 10 points out that the seeds of the RNGs are the
same as ∀1 ≤ i < a, si = s′i. In this way, the coded pseudo-
random symbols generated by the RNG seeded with si are
the same as those generated by the RNG seeded with s′i,
satisfying that ∀1 ≤ i < a, f (xi,j (M′)) = f (xi,j (M)).

As such, we have ∀1 ≤ i < a, yi,j − f (xi,j (M′)))2 =
yi,j − f (xi,j (M)))2 = n2

i,j .

B. Proof of Assertion (ii)

We first establish the following Lemma:

Lemma 11. If ma 6= m′a, then ∀a ≤ i ≤ n/k,Pr {si = s′i} ≤
1− (1− 2−v)i−a+1.

Proof. Denote Ei as the event that
⋂i
j=a sj 6= s′j , then

by leveraging corollary 1, we have ∀a ≤ i ≤ n/k,
Pr (Ei+1 |Ei ) = 1− 2−v . Therefore, since Ei ⊂ Ei−1,

Pr (Ei) = Pr
(
Ei
⋂
Ei−1

)
= Pr (Ei |Ei−1 ) Pr (Ei−1)

=
(
1− 2−v

)
Pr (Ei−1) =

(
1− 2−v

)2
Pr (Ei−2)

= · · ·
= (1− 2−v)i−a+1.

(74)
Since Pr (Ei−1) = (1 − 2−v)i−a and Pr (si = s′i |Ei−1 ) =
2−v we then establish the inequality between Pr {si = s′i} and
Pr
{
si−1 = s′i−1

}
leveraging the union bound:

Pr {si = s′i} = Pr (Ei−1, si = s′i) + Pr
(
Ei−1, si = s′i

)
≤ Pr (Ei−1) Pr (si = s′i |Ei−1 ) + Pr

(
si−1 = s′i−1, si = s′i

)
≤ (1− 2−v)i−a · 2−v + Pr

(
si−1 = s′i−1

)
.

(75)
Iterating (75) yields the inequality Pr {si = s′i} ≤

∑i
j=a(1−

2−v)j−a · 2−v = 1− (1− 2−v)i−a+1. �

With Lemma 11, we then adopt the sandwich theorem, and
have that

0 ≤ lim
v→∞

Pr {si = s′i} ≤ lim
v→∞

1−(1−2−v)i−a+1 = 0. (76)

Consequently, it follows that lim
v→∞

Pr (si = s′i) = 0. This
implies that as the parameter v grows, the probability of
event si = s′i becomes negligible. In this case, we can assert
∀a ≤ i ≤ n/k, si 6= s′i when confronted with a sufficiently
large v, which then leads to ∀a ≤ i ≤ n/k, f (xi,j (M′))
is independent with f (xi,j (M)). Note that f (xi,j (M′)) is
independent with ni,j and yi,j = f (xi,j (M)) + ni,j , as
desired, we complete the proof of assertion (ii).

APPENDIX D
PROOF OF LEMMA 4

We first transform the RHS of (31) as a piece-wise function.
Let (

π
∑n/k
i=a

∑L
j=1 n

2
i,j

)La/2
(2c − 1)

LaΓ
(
1 + La

2

) = 1, (77)

we have√√√√n/k∑
i=a

L∑
j=1

n2
i,j =

(2c − 1) Γ(1 + La/2)
1/La

√
π

. (78)
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1(√
2πσ2

)La ∫
· · ·
∫

n/k∑
i=a

L∑
j=1

n2
i,j≤D2

(
π
∑n/k
i=a

L∑
j=1

n2
i,j

)La/2
(2c − 1)

LaΓ
(
1 + La

2

) e−
n/k∑
i=a

L∑
j=1

n2
i,j

2σ2

n/k∏
i=a

L∏
j=1

dni,j

︸ ︷︷ ︸
J1

+
1(√

2πσ2
)La ∫

· · ·
∫

n/k∑
i=a

L∑
j=1

n2
i,j≥D2

e

−
n/k∑
i=a

L∑
j=1

n2
i,j

2σ2

n/k∏
i=a

L∏
j=1

dni,j

︸ ︷︷ ︸
J2

.

(80)

J1 =

∫ D
0
r2La−1e

−r2

2σ2 dr(√
2σ2
)La

(2c − 1)
LaΓ

(
1 + La

2

) ∫ 2π

0

∫ π

0

· · ·
∫ π

0

(
La−2∏
i=1

sinLa−1−i (φi) dφi

)
dφLa−1,

J2 =

∫∞
D rLa−1e

−r2

2σ2 dr(√
2πσ2

)La ∫ 2π

0

∫ π

0

· · ·
∫ π

0

(
La−2∏
i=1

sinLa−1−i (φi) dφi

)
dφLa−1,

(83)

Let D = (2c−1)Γ(1+La/2)1/La√
π

, the integrand of (31) is ex-
pressed as a piece-wise function:

min

1,

(
π
∑n/k
i=a

∑L
j=1 n

2
i,j

)La/2
(2c − 1)

LaΓ
(
1 + La

2

)
 =


1 if

√∑n/k
i=a

∑L
j=1 n

2
i,j ≥ D,(

π
∑n/k
i=a

∑L
j=1 n

2
i,j

)La/2
(2c−1)LaΓ(1+La

2 )
if
√∑n/k

i=a

∑L
j=1 n

2
i,j < D.

(79)
Plug the piece-wise function (79) in the La-dimension integral
in (31), the integral turns to (80) at the top of this page. We
define J1 as the first term and J2 as the second term on
the RHS of (80). To solve both J1 and J2, we propose a
method of variable substitution to simplify the integration pro-
cess. Specifically, this involves transitioning from Cartesian
coordinates (na,1, · · · , nn/k,L) to hyperspherical coordinates
(r, φ1, · · · , φLa−1):

na,1 = r cosφ1,

na,2 = r sinφ1 cosφ2,

...
nn/k,L−1 = r sinφ1 · · · sinφLa−2 cosφLa−1,

nn/k,L = r sinφ1 · · · sinφLa−2 sinφLa−1.

(81)

The Jacobian determinant plays a crucial role when per-
forming variable substitution in integral transformations. In
the context of our analysis, the Jacobian determinant can be
calculated as:

det

(
∂ni,j

∂ (r, φκ)

)
= rLa−1

La−2∏
i=1

sinLa−1−i (φi) , (82)

Now, we can rewrite J1 and J2 as given in (83) at the top of
this page, where the multiple integrals on the RHS is:

2π∫
0

π∫
0

· · ·
π∫
0

(
La−2∏
i=1

sinLa−1−i (φi) dφi

)
dφLa−1 = πLa/2La

Γ(1+La
2 )
.

(84)
Then, substituting (84) into (83) yields

πLa/2La
∫ D

0
r2La−1e−

r2

2σ2 dr

(2c − 1)
LaΓ2

(
1 + La

2

) (√
2σ2
)La +

La
∫∞
D rLa−1e−

r2

2σ2 dr

Γ
(
1 + La

2

) (√
2σ2
)La ,

(85)
where

∫ D
0
r2La−1e−

r2

2σ2 dr and
∫∞
D rLa−1e−

r2

2σ2 dr can be ex-
plicitly expressed in Lemma 12 and Lemma 13, respectively,
with D = (2c−1)Γ(1+La/2)1/La√

π
.

Lemma 12.
∫ D

0
r2La−1e−

r2

2σ2 dr is explicit, given as:

σ2La

(
−e

−D2

2σ2

La∑
i=1

D2(La−i)

σ2(La−i)
Ii−1 + ILa−1

)
, (86)

where Ii ,
i∏

j=1

2 (La − j).

Proof. See Appendix G. �

Lemma 13.
∫∞
D rLa−1e−

r2

2σ2 dr is explicit, given as::
σLae

−D2

2σ2 G(La/2), La is even

σLa
(√

2πQ
(D
σ

)
K (La−3)

2
+ e

−D2

2σ2 G(La−1
2 )

)
, La is odd

,

(87)

where Ki ,
i∏

j=1

(La − 2j) and G(x) =
∑x
i=1

DLa−2i

σLa−2i · Ki−1.

Proof. See Appendix H. �

By applying Lemma 12 and Lemma 13 in Lemma 4, we
derive the explicit expression for the La-dimension integral in
(31). Our remaining focus is to restructure the RHS of (85) for

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2024.3435391

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 02,2024 at 00:57:05 UTC from IEEE Xplore.  Restrictions apply. 



13

better tractability in terms of SNR γ. For uniformly distributed
Spinal codes, the SNR γ can be approximated as

γ =
E f(xi,j(M

′))

σ2
=

(2c − 1)
2 − 1

12σ2
≈ (2c − 1)

2

12σ2
. (88)

From the deduction 2c−1
σ =

√
12γ, we are able to recast Dσ

in a form that is reliant on γ:

D
σ

=
(2c − 1) Γ(1 + La/2)

1/La

σ
√
π

=

√
12γ

π
Γ(1 + La/2)

1/La .

(89)
Denote the RHS of (89) as β (La, γ) and substitute it into
(86), the integral

∫ D
0
r2La−1e−

r2

2σ2 dr turns to

σ2La

(
−e

−β(La,γ)2
2

La∑
i=1

β (La, γ)
2(La−i)Ii−1 + ILa−1

)
.

(90)
Similarly, substituting Dσ = β (La, γ) into (87) and the integral∫∞
D rLa−1e−

r2

2σ2 dr turns to (18).

Define H (La, γ) ,
∫∞
D r2La−1e−

r2

2σ2 dr/σ2La , and

G (La, γ) ,
∫∞
D rLa−1e−

r2

2σ2 dr/σLa , we explicitly express
G (La, γ) and H (La, γ) as given in (17) and (18). Then,
substituting (17) and (18) into (85) accomplishes the proof.

APPENDIX E
PROOF OF LEMMA 6

To rigorously prove this, we introduce a rotation matrix
that operates within the La-dimension hyperspace. The La-
dimension rotation matrix is given as A, with

A =

 A1

...
ALa

 ∈ RLa×La , AgT =

‖g‖, 0, · · · , 0︸ ︷︷ ︸
La−1


T

. (91)

The second term of (91) is formulated to ensure that the
rotation matrix A rotates the vector g along an axis, thereby
simplifying the analysis. Being a rotation matrix, A fulfills
that ATA = ILa . This property helps simplify the probability

Pr
(
g
(
g + 2NLa

)T ≤ 0
)

= Pr
(
gATA

(
g + 2NLa

)T ≤ 0
)

= Pr
([

AgT
]T (

AgT + 2A
[
NLa

]T) ≤ 0
)
.

(92)

Substituting the second term of (91) into the RHS of (92)
yields

Pr
([

AgT
]T (

AgT + 2A
[
NLa

]T) ≤ 0
)

= Pr
(
‖g‖2 + 2‖g‖ ·A1

[
NLa

]T ≤ 0
)

= Pr

(
A1

[
NLa

]T ≤ −‖g‖
2

)
, (93)

which can be expanded as an La-fold integral
La︷ ︸︸ ︷∫
· · ·
∫

A1[NLa ]T≤− ‖g‖2

1(√
2πσ2

)La e− ‖NLa‖22σ2

n/k∏
i=a

L∏
j=1

dni,j . (94)

The complexity of (94) arises from the abstract nature of
the integration region A1

[
NLa

]T ≤ −‖g‖2 . To simplify this
integration region, we introduce an additional rotation matrix
B. The rotation matrix is defined as

B ,

 B1

...
BLa

 ∈ RLa×La , (95)

which should satisfy that BBT = ILa and

B
[
NLa

]T
=

A1

[
NLa

]T
, 0, · · · , 0︸ ︷︷ ︸

La−1


T

. (96)

(96) is formulated to ensure that the rotation matrix B ro-
tates the vector NLa along the same axis as did in (91).
With rotation matrix B, we can implement the coordinates
transformations such that

[
NLa

]T
= BT

[
nLa

]T
, where nLa

is the transformed vector consisting of {n′i,j}i∈[n/k],j∈[L].
Substituting

[
NLa

]T
= BT

[
nLa

]T
into (94) yields that

La︷ ︸︸ ︷∫
· · ·
∫

A1[NLa ]T≤− ‖g‖2

1(√
2πσ2

)La e− ‖NLa‖22σ2

n/k∏
i=a

L∏
j=1

dni,j =

La︷ ︸︸ ︷∫
· · ·
∫

A1BT[nLa ]T≤− ‖g‖2

e−
nLaBBT[nLa ]

T

2σ2(√
2πσ2

)La ·
∣∣J (nLa)∣∣ n/k∏

i=a

L∏
j=1

dn′i,j ,

(97)
where J

(
nLa

)
is the Jacobi matrix, given as

J
(
nLa

)
=


∂n′a,1
∂na,1

· · · ∂n′a,1
∂nn/k,L

...
. . .

...
∂n′n/k,L
∂na,1

· · · ∂n′n/k,L
∂nn/k,L

 . (98)

As
[
NLa

]T
= BT

[
nLa

]T
, we have that

[
nLa

]T
=

B
[
NLa

]T
, and thus the Jacobi matrix is simply

J
(
nLa

)
= B. (99)

Recall that B is a rotation matrix, we obtain that |J
(
nLa

)
|2 =

|B|2 = |BBT| = |ILa | = 1 and thus |J
(
nLa

)
| = 1.

Also, we could let A1 = B1 without loss of generality. This
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characteristic yields the following equation.

A1B
T =

[
A1B

T
1 A1B

T
2 · · · A1B

T
La

]
=
[
B1B

T
1 B1B

T
2 · · · B1B

T
La

]
(a)
=

1, 0, · · · , 0︸ ︷︷ ︸
La

 , (100)

where (a) is obtained from the property of rotation matrix
such that BBT = ILa . Then, applying (100) and (98) in (97)
results in the following simplification:

La︷ ︸︸ ︷∫
· · ·
∫

A1BT[nLa ]T≤− ‖g‖2

e−
nLaBBT[nLa ]

T

2σ2(√
2πσ2

)La ·
∣∣J (nLa)∣∣ n/k∏

i=a

L∏
j=1

dn′i,j

=

La︷ ︸︸ ︷∫
· · ·
∫

[1,0,··· ,0][nLa ]T≤− ‖g‖2

1(√
2πσ2

)La e− ‖nLa‖22σ2

n/k∏
i=a

L∏
j=1

dn′i,j

=

La︷ ︸︸ ︷∫
· · ·
∫

n′a,1≤−
‖g‖
2

1(√
2πσ2

)La e− ‖nLa‖22σ2

n/k∏
i=a

L∏
j=1

dn′i,j

=

∫ − ‖g‖2
−∞

1√
2πσ2

e−
(n′a,1)

2

2σ2 dn′a,1 = Q

(
‖g‖
2σ

)
.

(101)

APPENDIX F
PROOF OF LEMMA 9

Substitute (72) into (16), proving the asymptotic inequality
given in (70) is equivalent to proving

lim
γ→∞

F (La, γ)−

2−2c
∑
i∈Ω

∑
j∈Ω

exp

(
− (i− j)2

8σ2

)La < 0.

(102)
where F (La, γ) is given in (16), with the second term’s limit
given as

lim
γ→∞

LaG (La, γ)

Γ
(
1 + La

2

) (√
2
)La = 0. (103)

and the first term upper bounded by

πLa/2LaH (La, γ)

Γ2
(
1 + La

2

) (√
24γ
)La < πLa/2LaILa−1

Γ2
(
1 + La

2

) (√
24γ
)La (104)

Thus, the LHS of (102) is upper bounded by

lim
γ→∞

πLa/2LaILa−1

Γ2
(
1 + La

2

) (√
24γ
)La − 2−cLa = −2−cLa < 0.

(105)
We thus establish the inequality in (102).

APPENDIX G
PROOF OF LEMMA 12

Let r = σx, we can obtain that∫ D
0

r2La−1e−
r2

2σ2 dr
r=σx

= σ2La ·
∫ D/σ

0

x2La−1e−
x2

2 dx.

(106)
Thus, the task at hand is to solve the integral∫ D/σ

0
x2La−1e−

x2

2 dx. We commence our analysis by

examining the indefinite integral
∫
x2La−1e−

x2

2 dr. To
solve this integral, we systematically apply the method of
integration by parts, progressing iteratively from n = 1 to
n = La:∫

x2n−1e−
x2

2 dx = −x2La−2e−
x2

2 + (2La − 2)
∫
x2La−3e−

x2

2 dx,

(107)
Hence, let an (x) =

∫
xne−

x2

2 dx and we obtain the recurrence
relation that

a2n−1 (x) = −x2n−2e−
x2

2 + (2n− 2) a2n−3 (x) , n ∈ N+

a1(x) = −e− x
2

2 + C.
(108)

By solving the recursive relation in (108), we could obtain the
explicit expression of a2n−1 (x) as:

a2n−1 (x) = −e
−x2
2

n∑
i=1

x2(n−i)
i−1∏
j=1

2 (n− j) + C1. (109)

As such, the indefinite integral
∫
x2La−1e−

x2

2 dr equals to
a2n−1(x). Applying (109) in (106) results in the solution that∫ D

0

r2La−1e−
r2

2σ2 dr = σ2La (a2La−1 (D/σ)− a2La−1 (0))

= σ2La

−e−D2

2σ2

La∑
i=1

D2(La−i)

σ2(La−i)

i−1∏
j=1

2 (n− j) +

La−1∏
j=1

2 (n− j)

 .

(110)

Let Ii ,
i∏

j=1

2 (La − j) and we can simplify the RHS of (110)

as

σ2La

(
−e

−D2

2σ2

La∑
i=1

D2(La−i)

σ2(La−i)
Ii−1 + ILa−1

)
. (111)

APPENDIX H
PROOF OF LEMMA 13

Let r = σx, we obtain that∫ ∞
D

rLa−1e−
r2

2σ2 dr
r=σx

= σLa ·
∫ ∞
D/σ

xLa−1e−
x2

2 dx. (112)

The solution to the indefinite integral
∫
xLa−1e−

x2

2 dx hinges
on the value of La, which leads to two distinct scenarios. In
the case where La is even, the solution can be derived from
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(109):∫
xLa−1e−

x2

2 dx = aLa−1 (x)
La=2n

= a2n−1 (x)

= −
n∑
i=1

x2(n−i)
i−1∏
j=1

2 (n− j) e
−x2
2 + C1

n=La
2= −

La/2∑
i=1

x2(La/2−i)
i−1∏
j=1

2 (La/2− j) e
−x2
2 + C1.

(113)

Let Ki ,
i∏

j=1

(La − 2j), and the definite integral∫∞
D/σ x

La−1e−
x2

2 dx can be calculated by

exp

{
−D2

2σ2

} La/2∑
i=1

D(La−2i)

σ(La−2i)
Ki−1. (114)

In the case where La is odd, notice that aLa−1 (x)
La=2n+1

=
a2n (x), we can iteratively introduce the integration by parts
and obtain the recurrence relations:

a2n (x) = −x2n−1e−
x2

2 + (2n− 1) a2n−3 (x) , n ∈ N+,

a0(x) =
∫
e−

x2

2 dx.
(115)

By solving the above recursive formula, we obtain the explicit
expression of a2n (x):

−
n∑
i=1

x2(n−i)+1
i−1∏
j=1

(2 (n− j) + 1) e
−x2
2 +

n−1∏
j=1

(2 (n− j) + 1) a0 (x).

(116)
As such, the indefinite could be expressed by∫

xLa−1e−
x2

2 dx = aLa−1 (x)
La=2n+1

= a2n (x)

= −e
−x2
2

(La−1)/2∑
i=1

xLa−2iKi−1 + a0 (x)K(La−3)/2.

(117)

Note that

lim
x→∞

a0 (x)− a0 (D/σ) =
√

2πQ (D/σ) , (118)

The definite integral in the RHS of (112) is then given as:∫ ∞
D/σ

xLa−1e−
x2

2 dx

= e
−D2

2σ2

(La−1)/2∑
i=1

DLa−2i

σLa−2i
Ki−1 +K(La−3)/2

∫ ∞
D/σ

e−
x2

2 dx

= e
−D2

2σ2

(La−1)/2∑
i=1

DLa−2i

σLa−2i
Ki−1 +

√
2πQ (D/σ)K(La−3)/2.

(119)

Substitute (119) into (112) and we obtain the solution.

REFERENCES

[1] R. G. Gallager, Information theory and reliable communication. Wiley,
1968.

[2] X. Yu, Y. Li, W. Yang, and Y. Sun, “Design and analysis of unequal
error protection rateless Spinal Codes,” IEEE Trans. Commun., vol. 64,

no. 11, pp. 4461–4473, 2016.
[3] H. Balakrishnan, P. Iannucci, J. Perry, and D. Shah, “De-randomizing

shannon: The design and analysis of a capacity-achieving rateless code,”
arXiv preprint arXiv:1206.0418, 2012.

[4] J. Perry, H. Balakrishnan, and D. Shah, “Rateless Spinal codes,” Proc.
ACM HotNets, pp. 1–6, 2011.

[5] J. Perry, P. A. Iannucci, K. E. Fleming, H. Balakrishnan, and D. Shah,
“Spinal codes,” Proc. ACM SIGCOMM 2012, pp. 49—-60, 2012.

[6] R. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory,
vol. 8, no. 1, pp. 21–28, 1962.

[7] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2551–2567, 2006.

[8] A. Gudipati and S. Katti, “Strider: Automatic rate adaptation and
collision handling,” Proc. ACM SIGCOMM 2011, pp. 158—-169, 2011.

[9] M. Vaezi, A. Azari, S. R. Khosravirad, M. Shirvanimoghaddam, M. M.
Azari, D. Chasaki, and P. Popovski, “Cellular, wide-area, and non-
terrestrial IoT: A survey on 5G advances and the road toward 6G,”
IEEE Commun. Surv. Tutorials, vol. 24, no. 2, pp. 1117–1174, 2022.

[10] S. Wu, D. Li, J. Jiao, and Q. Zhang, “CS-LTP-Spinal: A cross-
layer optimized rate-adaptive image transmission system for deep-space
exploration,” Sci. China Inf. Sci., vol. 65, no. 1, 2022.

[11] H. Liang, A. Liu, X. Tong, and C. Gong, “Raptor-like rateless spinal
codes using outer systematic polar codes for reliable deep space com-
munications,” in IEEE INFOCOM Workshops, 2020, pp. 1045–1050.

[12] N. Deng, X. Shi, M. Sheng, J. Liu, H. Wei, N. Zhao, and D. Niyato,
“Enhancing millimeter wave cellular networks via uav-borne aerial IRS
swarms,” IEEE Trans. Commun., vol. 72, no. 1, pp. 524–538, 2024.

[13] L. Wang, Y. L. Che, J. Long, L. Duan, and K. Wu, “Multiple access
mmwave design for uav-aided 5g communications,” IEEE Wirel. Com-
mun., vol. 26, no. 1, pp. 64–71, 2019.

[14] X. Pang, M. Liu, Z. Li, Z. Jiao, and S. Sun, “Trust function based spinal
codes over the mobile fading channel between UAVs,” in Proc. IEEE
GLOBECOM, 2018, pp. 1–7.

[15] X. Shi and N. Deng, “Modeling and analysis of mmwave UAV swarm
networks: A stochastic geometry approach,” IEEE Trans. Wirel. Com-
mun., vol. 21, no. 11, pp. 9447–9459, 2022.

[16] P. A. Iannucci, J. Perry, H. Balakrishnan, and D. Shah, “No symbol left
behind: a link-layer protocol for rateless codes,” in Proc. ACM Mobicom,
2012, pp. 17–28.

[17] J. Xu, S. Wu, J. Jiao, and Q. Zhang, “Optimized Puncturing for the
Spinal Codes,” in Proc. IEEE ICC, 2019, pp. 1–5.

[18] A. Li, S. Wu, Y. Wang, J. Jiao, and Q. Zhang, “Spinal codes over BSC:
Error probability analysis and the puncturing design,” in Proc. IEEE
VTC2020-Spring, 2020, pp. 1–5.

[19] X. Yu, Y. Li, and W. Yang, “Superposition Spinal codes with unequal
error protection property,” IEEE Access, vol. 5, pp. 6589–6599, 2017.

[20] W. Yang, Y. Li, X. Yu, and Y. Sun, “Two-way Spinal codes,” in Proc.
IEEE ISIT, 2016, pp. 1919–1923.

[21] X. Yu, Y. Li, and W. Yang, “Superposition spinal codes with unequal
error protection property,” IEEE Access, vol. 5, pp. 6589–6599, 2017.

[22] A. Li, S. Wu, J. Jiao, N. Zhang, and Q. Zhang, “Spinal codes over
fading channel: Error probability analysis and encoding structure im-
provement,” IEEE Trans. Wirel. Commun., vol. 20, no. 12, pp. 8288–
8300, 2021.

[23] S. Meng, S. Wu, A. Li, J. Jiao, N. Zhang, and Q. Zhang, “Partial self-
concatenation structure and performance analysis of Spinal codes over
rayleigh fading channel,” IEEE Trans. Veh. Technol., vol. 71, no. 6, pp.
6767–6771, 2022.

[24] X. Xu, S. Wu, D. Dong, J. Jiao, and Q. Zhang, “High performance
short polar codes: A concatenation scheme using spinal codes as the
outer code,” IEEE Access, vol. 6, pp. 70 644–70 654, 2018.

[25] H. Liang, A. Liu, X. Tong, and C. Gong, “Raptor-like rateless spinal
codes using outer systematic polar codes for reliable deep space com-
munications,” in IEEE INFOCOM Workshops, 2020, pp. 1045–1050.

[26] D. Dong, S. Wu, X. Jiang, J. Jiao, and Q. Zhang, “Towards high
performance short polar codes: Concatenated with the Spinal codes,”
in Proc. IEEE PIMRC, 2017, pp. 1–5.

[27] Y. Cao, F. Du, J. Zhang, and X. Peng, “Polar-UEP Spinal concatenated
encoding in free-space optical communication,” Applied Optics, vol. 61,
no. 1, pp. 273–278, 2022.

[28] Y. Li, J. Wu, B. Tan, M. Wang, and W. Zhang, “Compressive Spinal
codes,” IEEE Trans. Veh. Technol., vol. 68, no. 12, pp. 11 944–11 954,
2019.

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2024.3435391

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 02,2024 at 00:57:05 UTC from IEEE Xplore.  Restrictions apply. 



16

[29] Y. Hu, R. Liu, H. Bian, and D. Lyu, “Design and analysis of a low-
complexity decoding algorithm for Spinal codes,” IEEE Trans. Veh.
Technol., vol. 68, no. 5, pp. 4667–4679, 2019.

[30] S. Xu, S. Wu, J. Luo, J. Jiao, and Q. Zhang, “Low complexity decoding
for spinal codes: Sliding feedback decoding,” in Proc. IEEE VTC-Fall.
IEEE, 2017, pp. 1–5.

[31] W. Yang, Y. Li, X. Yu, and J. Li, “A low complexity sequential decoding
algorithm for rateless spinal codes,” IEEE Commun. Lett., vol. 19, no. 7,
pp. 1105–1108, 2015.

[32] S. Meng, S. Wu, A. Li, J. Jiao, N. Zhang, and Q. Zhang, “Analysis
and optimization of the harq-based spinal coded timely status update
system,” IEEE Transactions on Communications, vol. 70, no. 10, pp.
6425–6440, 2022.

[33] ——, “Analysis and optimization of spinal codes over the bsc: from the
aoi perspective,” in 2021 IEEE International Conference on Communi-
cations Workshops (ICC Workshops), 2021, pp. 1–6.

[34] F. Lázaro, G. Liva, G. Bauch, and E. Paolini, “Bounds on the error
probability of Raptor codes under maximum likelihood decoding,” IEEE
Trans. Inf. Theory, vol. 67, no. 3, pp. 1537–1558, 2021.

[35] D. Goldin and D. Burshtein, “Performance bounds of concatenated Polar
coding schemes,” IEEE Trans. Inf. Theory, vol. 65, no. 11, pp. 7131–
7148, 2019.

[36] B. Shuval and I. Tal, “A lower bound on the probability of error of Polar
codes over BMS channels,” IEEE Trans. Inf. Theory, vol. 65, no. 4, pp.
2021–2045, 2019.

[37] B. Schotsch, G. Garrammone, and P. Vary, “Analysis of LT codes over
finite fields under optimal erasure decoding,” IEEE Commun. Lett.,
vol. 17, no. 9, pp. 1826–1829, 2013.

[38] B. Schotsch, Rateless coding in the finite length regime. Hochschulbib-
liothek der Rheinisch-Westfälischen Technischen Hochschule Aachen,
2014.

[39] I. Sason and S. Shamai, “Performance analysis of linear codes under
maximum-likelihood decoding: A tutorial,” Found. Trends Commun. Inf.
Theory, vol. 3, no. 1–2, pp. 1–222, 2006.

[40] H. Solomon, Geometric Probability. SIAM, 1978, vol. 28.
[41] J. W. Craig, “A new, simple and exact result for calculating the

probability of error for two-dimensional signal constellations,” in Proc.
IEEE MILCOM, 1991, pp. 571–575.

Aimin Li (Student Member, IEEE) received his
B.E. from Harbin Institute of Technology Shenzhen
(HITSZ) in 2020, where he was awarded the highest
honor of Undergraduate Thesis. He is currently a
Ph.D student at HITSZ and a visit student at Institute
for Infocomm Research (I2R), Agency for Science,
Technology, and Research (A*STAR). He has served
as a Reviewer for IEEE TWC, IEEE TNNLS, IEEE
TVT, IEEE CL, IEEE ISIT, etc. His current research
interests include channel coding, age of information
and goal-oriented semantic communications.

Shaohua Wu (Member, IEEE) received the Ph.D.
degree in communication engineering from Harbin
Institute of Technology, Harbin, China, in 2009.
From 2009 to 2011, he held a postdoctoral position
with the Department of Electronics and Informa-
tion Engineering, Shenzhen Graduate School, Harbin
Institute of Technology, where he has been with
since 2012. From 2014 to 2015, he was a Visiting
Researcher with BBCR, University of Waterloo,
Canada. He is currently a Full Professor with the
Harbin Institute of Technology (Shenzhen), China.

He is also a Professor with Pengcheng Laboratory, Shenzhen, China. His
research interests include satellite and space communications, advanced chan-
nel coding techniques, space-air-ground-sea integrated networks, and B5G/6G
wireless transmission technologies. He has authored or coauthored over 100
papers in these fields and holds over 40 Chinese patents.

Xiaomeng Chen received her B.E. degree in elec-
tronic and information engineering from the Harbin
Institute of Technology (Shenzhen) in 2023, where
she was awarded the highest honor of Undergrad-
uate Thesis. She is currently pursuing her M.S.
degree with the Department of Electronic Engineer-
ing, HITSZ. Her research interests include advanced
channel coding techniques, wireless communica-
tions, and information theory.

Sumei Sun (Fellow, IEEE) is Executive Director of
the Institute for Infocomm Research (I2R), Agency
for Science, Technology, and Research (A*STAR),
Singapore. She also holds an adjunct appointment
with the National University of Singapore, and joint
appointment with the Singapore Institute of Technol-
ogy, both as a full professor. Her current research
interests include next-generation wireless commu-
nications, joint communication-sensing-computing-
control design, industrial internet of things, applied
deep learning and artificial intelligence. She has been

Member-at-Large of the IEEE Communications Society and is a member of
the IEEE Vehicular Technology Society Board of Governors (2022-2024),
Fellow of the IEEE and the Academy of Engineering Singapore.

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2024.3435391

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 02,2024 at 00:57:05 UTC from IEEE Xplore.  Restrictions apply. 


